在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(Ⅰ)求证:平面EDB⊥
在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(Ⅰ)求证:平面EDB⊥平面EBC;(Ⅱ)求二面角E-D...
在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(Ⅰ)求证:平面EDB⊥平面EBC;(Ⅱ)求二面角E-DB-C的正切值;(Ⅲ)求C到面EDB的距离.
展开
展开全部
(Ⅰ)证明:在长方体ABCD-A1B1C1D1中,
AB=2,BB1=BC=1,E为D1C1的中点.
∴△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.
∴∠DEC=90°,即DE⊥EC.
在长方体ABCD-A1B1C1D1中,BC⊥平面D1DCC1,又DE?平面D1DCC1,
∴BC⊥DE.又EC∩BC=C,∴DE⊥平面EBC.
∵DE?平面DEB,∵平面DEB⊥平面EBC.
(Ⅱ)如图,过E在平面D1DCC1中作EO⊥DC于O.
在长方体ABCD-A1B1C1D1中,∵面ABCD⊥面D1DCC1,∴EO⊥面ABCD.
过O在平面DBC中作OF⊥DB于F,
连接EF∴EF⊥BD.
∠EFO为二面角E-DB-C的平面角.
利用平面几何知识可得OF=
1 | ||
|
5 |
所以二面角E-DB-C的正切值为
5 |
(Ⅲ)等体积法:
∵VE-DBC=VC-DBE,
∴
1 |
3 |
1 |
2 |
1 |
3 |
1 |
2 |
?1×2×1=
5 |
|
∴d=
| ||
3 |
故C到面EDB的距离为
| ||
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |