密度函数是:f(x)=te^(-tx),
E(x)=∫xf(x)dx=∫ txe^(-tx)dx=1/t∫ ye^(-y)dy=1/t,所以E(x)=2。
D(x)= E(X − E(X))^2=E(x^2)-E(x)^2=∫tx^2e^(-tx)dx-1/t^2=1/t^2∫y^2e^(-y)dy -1/t^2= 2/t^2-1/t^2=1/t^2,所以D(x)=4。
指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
扩展资料
在概率论和统计学中,指数分布是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。
许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。
指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。