关于求质点对细杆的引力的微积分问题

关于求质点对细杆的引力的微积分问题均匀细杆质量M,长l,与杆的一段垂直距离为a的地方有一质量为m的质点,求引力。为什么不直接对dF在0~l上积分?还有,Fx和Fy的平方和... 关于求质点对细杆的引力的微积分问题均匀细杆质量M,长l,与杆的一段垂直距离为a的地方有一质量为m的质点,求引力。
为什么不直接对dF在0~l上积分?还有,Fx和Fy的平方和等于dF的积分结果吗?
展开
 我来答
帐号已注销
2020-12-28 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

(1)假设质点在细杆的左边,以细杆的左端点为原点以细杆的右方为正方向,建立x轴.把细杆上[x,x+dx]的一小段近似的看成质点,由于细杆是均匀的,因此这一小段的质量为MdxL,与质量为m的质点的距离为x+a;

所以依据两质点的引力公式,得到这小段细杆对质点的引力为:dF=KMmdxL(x+a)2

∴杆和质点间的相互引力F=∫L0KMmdxL(x+a)2=KMmL?[?1x+a]L0=KMmL[1a?1a+L]=KMma(a+L)

(2)∫L+aaKMm(a+L+x)Ldx=KMmLln2(L+a)2a+L

扩展资料:

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

参考资料来源:百度百科-微积分

热点那些事儿
高粉答主

2021-01-23 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:210万
展开全部

(1)假设质点在细杆的左边,以细杆的左端点为原点以细杆的右方为正方向,建立x轴.把细杆上[x,x+dx]的一小段近似的看成质点,由于细杆是均匀的,因此这一小段的质量为MdxL,与质量为m的质点的距离为x+a;

所以依据两质点的引力公式,得到这小段细杆对质点的引力为:dF=KMmdxL(x+a)2

∴杆和质点间的相互引力F=∫L0KMmdxL(x+a)2=KMmL[1x+a]L0=KMmL[1a1a+L]=KMma(a+L)

(2)∫L+aaKMm(a+L+x)Ldx=KMmLln2(L+a)2a+L

扩展资料

求不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-09-03
展开全部
(1)假设质点在细杆的左边,以细杆的左端点为原点以细杆的右方为正方向,建立x轴.把细杆上[x,x+dx]的一小段近似的看成质点,由于细杆是均匀的,因此这一小段的质量为MdxL,与质量为m的质点的距离为x+a所以依据两质点的引力公式,得到这小段细杆对质点的引力为:dF=KMmdxL(x+a)2∴杆和质点间的相互引力F=∫L0KMmdxL(x+a)2=KMmL?[?1x+a]L0=KMmL[1a?1a+L]=KMma(a+L)(2)∫L+aaKMm(a+L+x)Ldx=KMmLln2(L+a)2a+L
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
彡南山灬北海
2021-12-21
知道答主
回答量:1
采纳率:0%
帮助的人:416
展开全部
其实这涉及一个物理学的知识:力F是个矢量,求合力用的也是矢量运算。如果直接对dF积分的话,这是力的模(大小)的积分,但是每个dF方向都不同,所以此处不能直接对dF积分。应该将dF分解为dFx和dFy,这样的话力的方向可以保证相同,就自然可以用积分运算了
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ghhcygc
2020-05-20
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
可以去百度文库搜质点对细杆的引力分析,有我的一篇专门讲这个的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式