如图,在四边形abcd中ad,平行于bc,e为cd的中点,连接ae、be,be垂直于ae,延长ae
如图,在四边形abcd中ad,平行于bc,e为cd的中点,连接ae、be,be垂直于ae,延长ae交bc的延长线于点f求证:(1)fc=ad(2)ab=bc+ad...
如图,在四边形abcd中ad,平行于bc,e为cd的中点,连接ae、be,be垂直于ae,延长ae交bc的延长线于点f
求证:(1)fc=ad
(2)ab=bc+ad 展开
求证:(1)fc=ad
(2)ab=bc+ad 展开
3个回答
展开全部
1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根埋尺据全等三角形的性质即可解答.
(2)根据线段垂直平分线的性质判断出AB=BF即可.解答:证明:(1)∵AD∥BC(已知),
∴∠ADC=∠ECF(两直线平行,内错角相等),
∵E是CD的中点伏橡(已知),
∴DE=EC(中点的定义).
∵在△ADE与△FCE中,
∠ADC=∠ECFDE=EC∠AED=∠CEF,
∴△ADE≌△FCE(ASA),
∴FC=AD(全缺液旁等三角形的性质).
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF(全等三角形的对应边相等),
∴BE是线段AF的垂直平分线,
∴AB=BF=BC+CF,
∵AD=CF(已证),
∴AB=BC+AD(等量代换)
图为;
展开全部
证链厅前明:
(1)
在△AED与△CEF中
AD//BC
从而 ∠伏改ADE=∠ECF ∠DAE=∠EFC
又 CE=DE
从而 △AED≌△CEF[角角边]
则有 AD=CF
AE=EF
(2)
be垂直于ae
又由(1)已证得 AE=EF
从而 BE是AF的垂直平棚清分线
则有 AB=BF ①
又由(1)已证得 AD=CF
从而 BF=BC+CF=BC+AD ②
由①②得 AB=BC+AD
(1)
在△AED与△CEF中
AD//BC
从而 ∠伏改ADE=∠ECF ∠DAE=∠EFC
又 CE=DE
从而 △AED≌△CEF[角角边]
则有 AD=CF
AE=EF
(2)
be垂直于ae
又由(1)已证得 AE=EF
从而 BE是AF的垂直平棚清分线
则有 AB=BF ①
又由(1)已证得 AD=CF
从而 BF=BC+CF=BC+AD ②
由①②得 AB=BC+AD
追问
谢谢
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询