已知圆的内接四边形ABCD的边长分别为AB=2,BC=6, CD=DA=4,(1)求角A的大小;(2)求四边形ABCD的
已知圆的内接四边形ABCD的边长分别为AB=2,BC=6,CD=DA=4,(1)求角A的大小;(2)求四边形ABCD的面积....
已知圆的内接四边形ABCD的边长分别为AB=2,BC=6, CD=DA=4,(1)求角A的大小;(2)求四边形ABCD的面积.
展开
胡巴爱橙子586
推荐于2016-05-01
·
超过61用户采纳过TA的回答
知道答主
回答量:119
采纳率:50%
帮助的人:114万
关注
(1)A=120º(2)8 |
试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化. 由面积公式有四边形ABCD的面积S=S △ABD +S △BCD =  AB·AD·sinA+  BC·CD·sinC,∵A+C=180º∴sinA=sinC∴S=16sinA.由余弦定理得:BD 2 =AB 2 +AD 2 -2AB·AD·cosA=20-16cosA,BD 2 =CB 2 +CD 2 -2CB·CD·cosC=52-48cosC,∴20-16cosA=52-48cosC解之:cosA=-  , 又0º<A<180º, ∴A=120º,(2)由(1)有四边形ABCD的面积S=16  ,所以S=16sin120º=8  . 解:四边形ABCD的面积S=S △ABD +S △BCD =  AB·AD·sinA+  BC·CD·sinC ∵A+C=180º∴sinA=sinC∴S=16sinA. 由余弦定理得:BD 2 =AB 2 +AD 2 -2AB·AD·cosA=20-16cosA, BD 2 =CB 2 +CD 2 -2CB·CD·cosC=52-48cosC, ∴20-16cosA=52-48cosC解之:cosA=-  , 又0º<A<180º, ∴A=120º,S=16sin120º=8 |
收起
为你推荐: