已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x4x+1.(Ⅰ)求函数f(x

已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x4x+1.(Ⅰ)求函数f(x)在(-1,1)上的解析式;(Ⅱ)判断f(x)在(0,... 已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x4x+1.(Ⅰ)求函数f(x)在(-1,1)上的解析式;(Ⅱ)判断f(x)在(0,1)上的单调性;(Ⅲ)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解? 展开
 我来答
手机用户50919
推荐于2016-08-09 · TA获得超过253个赞
知道答主
回答量:126
采纳率:50%
帮助的人:140万
展开全部
解答:(Ⅰ)解:∵f(x)是x∈R上的奇函数,∴f(0)=0.---------(1分)
设x∈(-1,0),则-x∈(0,1),
f(?x)=
2?x
1+4?x
=
2x
1+4x
=-f(x)
f(x)= ?
2x
1+4x
---------(2分)
f(x)=
?
2x
1+4x
,x∈(?1,0)
0,x=0
2x
1+4x
,x∈(0,1)
---------(3分)
(Ⅱ)证明:设0<x1<x2<1,
f(x1)?f(x2)=
(2x1?2x2)+(2x1+2x2?2x2+2x1)
(4x1+1)(4x2+1)
(2x1?2x2)(1?2x1+x2)
(4x1+1)(4x2+1)
,------(4分)
∵0<x1<x2<1,
2x12x22x1+x220=1,---------(5分)
∴f(x1)-f(x2)>0
∴f(x)在(0,1)上为减函数.---------(6分)
(Ⅲ)解:∵f(x)在(0,1)上为减函数,
∴f(1)<f(x)<f(0)即
2
5
<f(x)<
1
2
---------(7分)
同理,f(x)在(-1,0)上时,f(x)∈(?
1
2
,?
2
5
)
---------(8分)
又f(0)=0
λ∈(?
1
2
,?
2
5
)
(
2
5
1
2
)
或λ=0时方程f(x)=λ在(-1,1)上有实数解.-----------------(10分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式