等腰三角形三边长分别为a,b,2,且a,b,是关于x的一元二次方程x的平方_6x n_1=0
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
3个回答
2015-10-30
展开全部
题干不全,无法回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
选B
考点: 根的判别式;一元二次方程的解;等腰直角三角形.
分析: 由三角形是等腰直角三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.
解答: 解:∵三角形是等腰直角三角形,
∴①a=2,或b=2,②a=b两种情况,
①当a=2,或b=2时,
∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,
∴x=2,
把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,
解得:n=9,
当n=9,方程的两根是2和4,而2,4,2不能组成三角形,
故n=9不合题意,
②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,
∴△=(﹣6)2﹣4(n﹣1)=0
解得:n=10,
故选B.
点评: 本题考查了等腰直角三角形的性质,一元二次方程的根,一元二次方程根的判别式,注意分类讨论思想的应用.
考点: 根的判别式;一元二次方程的解;等腰直角三角形.
分析: 由三角形是等腰直角三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.
解答: 解:∵三角形是等腰直角三角形,
∴①a=2,或b=2,②a=b两种情况,
①当a=2,或b=2时,
∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,
∴x=2,
把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,
解得:n=9,
当n=9,方程的两根是2和4,而2,4,2不能组成三角形,
故n=9不合题意,
②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,
∴△=(﹣6)2﹣4(n﹣1)=0
解得:n=10,
故选B.
点评: 本题考查了等腰直角三角形的性质,一元二次方程的根,一元二次方程根的判别式,注意分类讨论思想的应用.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2015-11-09
展开全部
nd的值为9或10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询