14个回答
展开全部
令x=t²,dx=2tdt
原式=∫[2t/(1+t³)]dt=2∫[t/(1+t)(1-t+t²)]dt
=(2/3)∫[(1+t)/(1-t+t²)-1/(1+t)]dt
=(-2/3)ln|1+t|+(1/3)∫[(2t+2)/(t²-t+1)]dt
=(-2/3)ln|1+t|+(1/3)∫[(2t-1)+3]/(t²-t+1)dt
=(-2/3)ln|t+1|+(1/3)∫[(2t-1)/(t²-t+1)]+∫[1/(t²-t+1)]dt
=(-2/3)ln|t+1|+(1/3)∫[1/(t²-t+1)]d(t²-t+1)+∫[1/(t-1/2)²+(√3/2)²]dt
=(-2/3)ln|t+1|+(1/3)ln(t²-t+1)+(2/√3)arctan[(2t-1)/√3]+C
将t=√x代入上式即得
原式=∫[2t/(1+t³)]dt=2∫[t/(1+t)(1-t+t²)]dt
=(2/3)∫[(1+t)/(1-t+t²)-1/(1+t)]dt
=(-2/3)ln|1+t|+(1/3)∫[(2t+2)/(t²-t+1)]dt
=(-2/3)ln|1+t|+(1/3)∫[(2t-1)+3]/(t²-t+1)dt
=(-2/3)ln|t+1|+(1/3)∫[(2t-1)/(t²-t+1)]+∫[1/(t²-t+1)]dt
=(-2/3)ln|t+1|+(1/3)∫[1/(t²-t+1)]d(t²-t+1)+∫[1/(t-1/2)²+(√3/2)²]dt
=(-2/3)ln|t+1|+(1/3)ln(t²-t+1)+(2/√3)arctan[(2t-1)/√3]+C
将t=√x代入上式即得
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=∫dx/((x+1)^2+2)^2
x+1=√2tanu sin2u=2√2(x+1)/(x^2+2x+3)
=∫√2(secu)^2du/[4(secu)^4]
=(√2/8)∫(1+cos2u)du
=√2u/8+√2sin2u/16
=(√2/8)arctan[(x+1)/√2]+(x+1)/[4(x^2+2x+3)]+C
x+1=√2tanu sin2u=2√2(x+1)/(x^2+2x+3)
=∫√2(secu)^2du/[4(secu)^4]
=(√2/8)∫(1+cos2u)du
=√2u/8+√2sin2u/16
=(√2/8)arctan[(x+1)/√2]+(x+1)/[4(x^2+2x+3)]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
换元法,令w=1+x^1/6
得到化简后
原式积分=\int 6w-12+6/w dw
=3w^2 -12w + 6 log(w) + c
代换回来即得到
积分=x^1/3 - 6x^1/6 + 6log(1+x^1/6) + c
得到化简后
原式积分=\int 6w-12+6/w dw
=3w^2 -12w + 6 log(w) + c
代换回来即得到
积分=x^1/3 - 6x^1/6 + 6log(1+x^1/6) + c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫[1/(x²-2x-3)]dx
=∫[1/(x+1)(x-3)]dx
=¼∫[(x+1)-(x-3)]/[(x+1)(x-3)] dx
=¼∫[1/(x-3) -1/(x+1)]dx
=¼∫[1/(x-3)]d(x-3) -¼∫[1/(x+1)]d(x+1)
=¼ln|x-3|-¼|ln(x+1)|+C
=¼ln|(x-3)/(x+1)| +C
=∫[1/(x+1)(x-3)]dx
=¼∫[(x+1)-(x-3)]/[(x+1)(x-3)] dx
=¼∫[1/(x-3) -1/(x+1)]dx
=¼∫[1/(x-3)]d(x-3) -¼∫[1/(x+1)]d(x+1)
=¼ln|x-3|-¼|ln(x+1)|+C
=¼ln|(x-3)/(x+1)| +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫(x-1)/(x²+2x+3)dx =½∫(2x-2)/(x²+2x+3)dx =½∫(2x+2-4)/(x²+2x+3)dx =½∫...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询