求∫arctan(e^x)/(e^x)dx?

 我来答
茹翊神谕者

2021-11-01 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1616万
展开全部

简单计算一下即可,答案如图所示

戚婉浮倩丽
2019-10-19 · TA获得超过987个赞
知道小有建树答主
回答量:1779
采纳率:100%
帮助的人:8.3万
展开全部
a=e^x
x=lna
dx=da/a
所以原式=∫arctana*da/a²
=-∫arctanad(1/a)
=-arctana/a+∫1/a*darctana
=-arctana/a+∫1/a*da/(1+a²)
∫1/a*da/(1+a²)
=∫(1+a²-a²)/a(a²+1)da
=∫[1/a-a/(a²+1)]da
=∫1/ada-∫a/(a²+1)da
=lna-1/2∫d(a²+1)/(a²+1)
=lna-1/2*ln(a²+1)+C
所以原式=-arctana/a+lna-1/2*ln(a²+1)+C
=-arctan(e^x)/e^x+x-1/2*ln(e^2x+1)+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式