已知函数f(x)=x^2+ax+3-a.当x属于[-2,2]时,f(x)大于等于0恒成立,求实数a的取值范围

已知函数f(x)=x^2+ax+3-a.当x属于[-2,2]时,f(x)大于等于0恒成立,求实数a的取值范围答案是-7≤a≤-4,可我不知道-4哪来“-a/2≥2且f(2... 已知函数f(x)=x^2+ax+3-a.当x属于[-2,2]时,f(x)大于等于0恒成立,求实数a的取值范围

答案是-7≤a≤-4,可我不知道-4哪来
“-a/2≥2且f(2)≥0 解就是-7≤a≤-4 ”怎么解的
展开
百度网友8c5eb5366
2010-07-07 · TA获得超过6427个赞
知道大有可为答主
回答量:1478
采纳率:0%
帮助的人:2739万
展开全部
就是函数在给定区间内的最小值为非负.
若对称轴-a/2<-2,则函数在区间[-2,2]上单调增,最小值为f(-2)=4-2a+3-a>=0
解得:a>4时,a<=7/3,无解
若对称轴-a/2>2,则函数在区间[-2,2]上单调减,最小值为f(2)=4+2a+3-a>=0
解得:a<-4时,a>=-7,即:-7<=a<-4
若对称轴-2<=-a/2<=2,则函数在区间[-2,2]上先减后增,最小值为f(-a/2)=[4(3-a)-a^2]/4>=0
解得:-4<=a<=4时,-6<=a<=2,即-4<=a<=2
综合上面三种情况,得:-7<=a<=2
你上面的答案不是很合理.
加课堂
2010-07-07 · TA获得超过1077个赞
知道小有建树答主
回答量:608
采纳率:0%
帮助的人:323万
展开全部
要讨论的:
-a/2≤-2且f(-2)≥0 无解
-a/2≥2且f(2)≥0 解就是-7≤a≤-4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
12问通
2010-07-12
知道答主
回答量:7
采纳率:0%
帮助的人:0
展开全部
是函数在给定区间内的最小值为非负.
若对称轴-a/2<-2,则函数在区间[-2,2]上单调增,最小值为f(-2)=4-2a+3-a>=0
解得:a>4时,a<=7/3,无解
若对称轴-a/2>2,则函数在区间[-2,2]上单调减,最小值为f(2)=4+2a+3-a>=0
解得:a<-4时,a>=-7,即:-7<=a<-4
若对称轴-2<=-a/2<=2,则函数在区间[-2,2]上先减后增,最小值为f(-a/2)=[4(3-a)-a^2]/4>=0
解得:-4<=a<=4时,-6<=a<=2,即-4<=a<=2
综合上面三种情况,得:-7<=a<=2
你上面的答案不是很合理. 要讨论的:
-a/2≤-2且f(-2)≥0 无解
-a/2≥2且f(2)≥0 解就是-7≤a≤-
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式