已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,以O为原点,OA所在直线为x轴,建立如图所示的平面直角

(接上)坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处。(1)求点C的坐标和过O、C、A三点的抛物线的解析式;(2)P是此抛物线的对称轴... (接上)坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处。(1)求点C的坐标和过O、C、A三点的抛物线的解析式;(2)P是此抛物线的对称轴上一动点,当以P、O、C为顶点的三角形是等腰三角形时,请直接写出点P的坐标;(3)M(x,y)是此抛物线上一个动点,当△MOB的面积等于△OAB面积时,求M的坐标。
今晚就要答案!!特别是第三问!!!绝不是简单的M与C重合
展开
仅仅的幸福home
2014-04-28 · 超过17用户采纳过TA的回答
知道答主
回答量:66
采纳率:0%
帮助的人:40.4万
展开全部
(1)过点C作CH⊥x轴,垂足为H,
∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,
∴OB=4,OA=2;
由折叠的性质知:∠COB=30°,OC=AO=2,
∴∠COH=60°,OH=,CH=3,
∴C点坐标为(根号3,3);
(2)∵抛物线y=ax2+bx(a≠0)经过C(根号3,3)、
A(2倍根号3,0)两点,
∴,解得:a=-1,b=2倍根号3;
∴此抛物线的函数关系式为:y=﹣x2+2倍根号3x;
(3)存在.
因为y=﹣x2+2倍根号3x的顶点坐标为(根号3,3),即为点C,
MP⊥x轴,垂足为N,设PN=t;
∵∠BOA=30°,
∴ON=t,
∴P(根号3t,t);
作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E,
把x=t代入y=﹣x2+2倍根号3x,得y=﹣3t2+6t,
∴M(根号3t,﹣3t2+6t),E(根号3,﹣3t2+6t),
同理:Q(根号3,t),D(根号3,1);
要使四边形CDPM为等腰梯形,只需CE=QD,
即3﹣(﹣3t2+6t)=t﹣1,解得:t=4/3,t=1(舍),
∴P点坐标为(4/3倍根号3,4/3),使得四边形CDPM为等腰梯形,
匿名用户
2014-03-28
展开全部
搞笑啊,我要是高中的时候几分钟也能有思路,高中生能有时间来网上给你做题啊。没事看知道的早就忘了。也不想想。自己问同学,问老师也好比在这发个求助。真是个sb
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式