初三数学题,相似三角形,急~在线等
【能做几道做几道,重点做出第一、二题~只要速度就给分,明天就关闭问题】【第一题】:如图,点M是△ABC内一点,过点M分别作平行于△ABC的各边,所形成的三个三角形,△小、...
【能做几道做几道,重点做出第一、二题~只要速度就给分,明天就关闭问题】
【第一题】:如图,点M是△ABC内一点,过点M分别作平行于△ABC的各边,所形成的三个三角形,△小、△中、△大,图中阴影部分的面积分别是4,9,49,则△ABC的面积是___________。
【第二题】:如图,把△ABC沿AB边平移到△A'B'C'位置,他们的重叠部分(即阴影部分)的面积为△ABC面积的一半,若AB=根号二,则此三角形移动的距离AA'是( )
A.根号二-1
B.根号二/2
C.1
D.1/2
【第三题】:如图,△ABC中,AB=5,BC=3,AC=4,PQ//AB,P点在AC上(与A、C不重合),Q点在BC上。
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长
(3)在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长。 展开
【第一题】:如图,点M是△ABC内一点,过点M分别作平行于△ABC的各边,所形成的三个三角形,△小、△中、△大,图中阴影部分的面积分别是4,9,49,则△ABC的面积是___________。
【第二题】:如图,把△ABC沿AB边平移到△A'B'C'位置,他们的重叠部分(即阴影部分)的面积为△ABC面积的一半,若AB=根号二,则此三角形移动的距离AA'是( )
A.根号二-1
B.根号二/2
C.1
D.1/2
【第三题】:如图,△ABC中,AB=5,BC=3,AC=4,PQ//AB,P点在AC上(与A、C不重合),Q点在BC上。
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长
(3)在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长。 展开
6个回答
展开全部
第一题: △ABC的面积是 100
第二题: A
第三题:1)PC=1
2)PC=24/7
3) 这样的M点应该有3个
第二题: A
第三题:1)PC=1
2)PC=24/7
3) 这样的M点应该有3个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.144
2.用特殊三角形等边直角三角形代入,选A
3.(1)2*根号2(8的开根号);(2)24/7;(3)存在。120/49
2.用特殊三角形等边直角三角形代入,选A
3.(1)2*根号2(8的开根号);(2)24/7;(3)存在。120/49
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一题100
第二题A
第三题(1)pc=1
(2)pc=24/7
(3)有三点
第二题A
第三题(1)pc=1
(2)pc=24/7
(3)有三点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一题】:如图,点M是△ABC内一点,过点M分别作平行于△ABC的各边,所形成的三个三角形,△小、△中、△大,图中阴影部分的面积分别是4,9,49,则△ABC的面积是___________。
解释:上面小平行四边形为12。都是相似三角形,则面积比是相应边比的平方。所以2:3,得2:5,小平行四边形25-9-4=12,
同理得中平行四边形81-4-49=28
大平行四边形:100-49-9=42
总面积为4+9+12+28+42+49=144
第二题】:如图,把△ABC沿AB边平移到△A'B'C'位置,他们的重叠部分(即阴影部分)的面积为△ABC面积的一半,若AB=根号二,则此三角形移动的距离AA'是(
)
A.根号二-1
B.根号二/2
C.1
D.1/2
选
A
解释,阴影部分是ABC的一半,则A‘B/AB=1/根号2,所以A’B=1
所以AA’=根号2-1
【第三题】:如图,△ABC中,AB=5,BC=3,AC=4,PQ//AB,P点在AC上(与A、C不重合),Q点在BC上。
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长
面积相等时,小三角形面积:大三角形面积=1:2,边长比为1:根号2
所以cp=3*1/根号2(自己化简)
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长
设cp=x,则cq=3/4x,pq=5/4x
x+3/4x+5/4x=4-x+3-3/4x+5/4x+5
化简得x=24/7
(3)在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长。
存在。pq=12根号2/7。
只要CPQM构成正方即可
设正方形边长为x,x/4=(3-x)/3,得x=12/7,所以对角线qp=12根号2/7
解释:上面小平行四边形为12。都是相似三角形,则面积比是相应边比的平方。所以2:3,得2:5,小平行四边形25-9-4=12,
同理得中平行四边形81-4-49=28
大平行四边形:100-49-9=42
总面积为4+9+12+28+42+49=144
第二题】:如图,把△ABC沿AB边平移到△A'B'C'位置,他们的重叠部分(即阴影部分)的面积为△ABC面积的一半,若AB=根号二,则此三角形移动的距离AA'是(
)
A.根号二-1
B.根号二/2
C.1
D.1/2
选
A
解释,阴影部分是ABC的一半,则A‘B/AB=1/根号2,所以A’B=1
所以AA’=根号2-1
【第三题】:如图,△ABC中,AB=5,BC=3,AC=4,PQ//AB,P点在AC上(与A、C不重合),Q点在BC上。
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长
面积相等时,小三角形面积:大三角形面积=1:2,边长比为1:根号2
所以cp=3*1/根号2(自己化简)
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长
设cp=x,则cq=3/4x,pq=5/4x
x+3/4x+5/4x=4-x+3-3/4x+5/4x+5
化简得x=24/7
(3)在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长。
存在。pq=12根号2/7。
只要CPQM构成正方即可
设正方形边长为x,x/4=(3-x)/3,得x=12/7,所以对角线qp=12根号2/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询