如图,过抛物线y2=2px(p>0)的焦点F的直线L交抛物线于点A、B,交其准线于点C,若BC=2
如图,过抛物线y2=2px(p>0)的焦点F的直线L交抛物线于点A、B,交其准线于点C,若BC=2BF,且AF=3,如图,过抛物线y2=2px(p>0)的焦点F的直线L交...
如图,过抛物线y2=2px(p>0)的焦点F的直线L交抛物线于点A、B,交其准线于点C,若BC=2BF,且AF=3,
如图,过抛物线y2=2px(p>0)的焦点F的直线L交抛物线于点A、B,交其准线于点C,若BC=2BF,且AF=3,则此抛物线的方程为。问p为什么不能是9╱2而是3╱2 展开
如图,过抛物线y2=2px(p>0)的焦点F的直线L交抛物线于点A、B,交其准线于点C,若BC=2BF,且AF=3,则此抛物线的方程为。问p为什么不能是9╱2而是3╱2 展开
1个回答
2014-04-09 · 知道合伙人软件行家
关注
展开全部
A,B两点到准线的距离分别为AD,BG
根据抛物线的定义可知AD=AF=3;BG=BF=BC/2
OF与准线的交点为E
ΔCBG∽ΔCAD
∴BC/AC=BG/AD
∴AC=BC/BG×AD=2×3=6
∴FC=6-3=3
ΔCBG∽ΔCFE
∴BC/FC=BG/EF
∴EF=BG/BC×FC=(1/2)×3=3/2 ∴p=3/2
∴抛物线方程为Y^2=3X
根据抛物线的定义可知AD=AF=3;BG=BF=BC/2
OF与准线的交点为E
ΔCBG∽ΔCAD
∴BC/AC=BG/AD
∴AC=BC/BG×AD=2×3=6
∴FC=6-3=3
ΔCBG∽ΔCFE
∴BC/FC=BG/EF
∴EF=BG/BC×FC=(1/2)×3=3/2 ∴p=3/2
∴抛物线方程为Y^2=3X
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询