一题大一的不定积分- - 题目如下图
展开全部
∫(1/x^2)根号[(1-x)/(1+x)] dx
因[(1-x)/(1+x)] >=0
x属于(-1,1]
定x=cosa a属于[0,pai)
则1/x^2=sec^2a
根号[(1-x)/(1+x)] =(1-cosa)/sina
dx=dcosx=-sinxdx
所以∫(1/x^2)根号[(1-x)/(1+x)] dx
=-∫[(1-cosa)/sina]*sina/cos^2ada
=-∫[(1-cosa)/cos^2ada
=-∫(sec^2a-seca)da
=-(tga-ln|seca+tga|)+C
=-tga+ln|seca+tga|+C
=-根号(1-x^2)/x+ln|1/x+根号(1-x^2)/x|+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询