郭敦顒回答:
在△ABC中,∠A=20°,AB=AC,∠B=∠C=(180°-20°)/2=80°,
∠BCD=60°,∠ACD=80°-60°=20°,∠A=∠ACD,
∴AD=CD
∴∠BDC=20°+20°=40°
∵BE=DE,∴∠EBD=∠EDB,
作EG⊥BD于G,BG=DG,∠BEG=∠DEG,
∠AEG=90°-20°=70°,
作DK⊥AC于K,AK=CK,∠ADK=90°-20°=70°,
∴△ADK∽△AEG。DK/EG=AD/AE=AK/AG,EG=DK•AG/AK,
设BC=1,
在△BCD中,按正弦定理:BD/sin60°=CD/sin80°=BC/sin40°=1.555724,
BD=1.3473,CD=1.832089
在△ABC中,AB/ sin80°=BC/ sin20°=2.9238,
AC=AB=2.87938
AK=AC/2=2.87938/2=1.43969,
DK=1.43969tan20°=0.52400,
AD=√(1.43969²+0.524²)=1.53208,
BD=1.3473,DG=BD/2=0.67365,
AG=AD+DG=2.20573,
EG=DK•AG/AK=0.524×2.20573/1.43969=0.8028,
DE=√(0.67365²+0.8028²)=1.048,
cos∠EDG=DG/DE=0.67365/1.048=0.6428,
∴∠EDG=50°,∠DEG=90°-50°=40°,∠BED=40°+40°=80°,
∠FED=∠BED(同角),∠FED=80°,
∴∠CDE=∠EDG-∠BDC=50°-40°=10°,
在△DEF中,∠CDE+∠FED=10°+80°=90°,
∴∠DFE=90°,
∴DC⊥BE。
对此题用纯几何的方法找了好长时间,未果,只好用几何三角与代数的综合方法才得以证明。三角中也只用了正弦定理:a/sinA=b/sinB=c/sinC,其实这不难,初中生看看这方面的书会懂得的。
设∠ABE=X,∠EBC=80-X
∵∠ACB=∠DCB+∠ACD,且∠ACB=80°,∠DCB=60°
∴∠ACD=20°
∠ACD+∠A=40°
∵DE=BE
∴∠DBE=∠BDE=X
∴∠EOC=∠EBC+∠DCB=140-X
又∵∠EOC=∠DBE+∠BDC=40+X
∴140-X=40+X
X=50°
140-X=90°∴DC垂直于BE
eoc为什么会等于ebc+deb又为什么等于140-x呢?
下面那个条件也看不懂。。。
2015-05-17
没明白,能具体一点么?
怎么证明呢?