各项均为正数的数列{an}的前n项和满足Sn>1,且6sn=(an+1)(an +2),n属于正
展开全部
Sn=(an²+3an+2)/6
a1=s1=(a1²+3a1+2)/6,得:a1²-3a1+2=0, 得(a1-1)(a1-2)=0, 因a1=s1>1, 得a1=2
n>1时,an=Sn-S(n-1)=[an²+3an-a(n-1)²-3a(n-1)]/6
an²-3an-a(n-1)²-3a(n-1)=0
[an+a(n-1)][an-a(n-1)]-3[an+a(n-1)]=0
得:an-a(n-1)=3
即{an}是公差为3,首项为2的等差数列
因此an=3n-1
(2) Sn=(an+1)(an+2)/6=3n(3n+1)/6=n(3n+1)/2
a1=s1=(a1²+3a1+2)/6,得:a1²-3a1+2=0, 得(a1-1)(a1-2)=0, 因a1=s1>1, 得a1=2
n>1时,an=Sn-S(n-1)=[an²+3an-a(n-1)²-3a(n-1)]/6
an²-3an-a(n-1)²-3a(n-1)=0
[an+a(n-1)][an-a(n-1)]-3[an+a(n-1)]=0
得:an-a(n-1)=3
即{an}是公差为3,首项为2的等差数列
因此an=3n-1
(2) Sn=(an+1)(an+2)/6=3n(3n+1)/6=n(3n+1)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询