求幂级数的和函数,什么时候用逐项积分法,什么时候用逐项求导法,积分几次就要求几次导吗?
1个回答
展开全部
看系数的,例如系数是分式
类似
(1/n)
求和Σ(1/n)x^n
这时求导就把1/n消去了,等于只需求Σx^(n-1),然后积个分就可以了
如果系数是n的多项式
Σ(n+1)x^n
这时就积分,把n+1消去
就等于先积Σx^(n+1),得出结果再求导即可
原因是Σx^n是等比数列求和,好求
如果不是正好的话还需要乘上x的幂次
例如
Σnx^n
直接积分不好弄,那么先令Tn=Σnx^n
则令Sn=Tn/x=Σnx^(n-1)然后就可以积分,求和,再求导得到Sn,最后乘上x得到Tn
类似
(1/n)
求和Σ(1/n)x^n
这时求导就把1/n消去了,等于只需求Σx^(n-1),然后积个分就可以了
如果系数是n的多项式
Σ(n+1)x^n
这时就积分,把n+1消去
就等于先积Σx^(n+1),得出结果再求导即可
原因是Σx^n是等比数列求和,好求
如果不是正好的话还需要乘上x的幂次
例如
Σnx^n
直接积分不好弄,那么先令Tn=Σnx^n
则令Sn=Tn/x=Σnx^(n-1)然后就可以积分,求和,再求导得到Sn,最后乘上x得到Tn
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询