如何备好数学课
展开全部
“凡事预则立,不预则废”,上好一节数学课的前提就是要准备好这一节课,所以备好课是上好课的关键之所在。如何才能“备好一节数学课”是我们广大数学教师一直在不断思索和探讨的课题。新课程改革形势下如何“备好一节数学课”,我结合我多年来的数学经验谈几点关于备好课的想法。
1.备教学目标
首先,应当全面的系统的掌握教学内容,明确所要教学的内容在整个知识体系中的地位和作用,明确教学的任务和方面。其次,备课时要仔细研究《数学课程标准》,从学生的接受能力情况看,本节课的教学重点、难点又是什么,最后确定学生学习目标,只有把握好教学目标,课堂上才能更好地落实学习目标,才能立足于学生的全面发展,课堂上有的放矢。
2.备教学对象
“教师是知识的传授者,学生是知识的接受者”,这种观念至今还影响着少数的教师,旧的教学习惯仍然不同程度地影响着课堂教学,《新课程标准》要求教师必须以教师教为中心,转移到以学生学为中心,以传授知识为中心转到以培养学生创新能力为中心,使教师在课堂中的主导地位和学生在学习中的主体作用有机会充分地协调搭配来,真正做到教学相长,课堂中教师不是传授学生知识,而是传授学生获取知识的能力,“授之以鱼,不如授之以渔”。因此,在小学的数学教学中,应努力创设问题情境,活跃学生思维,唤醒学生的求知欲望,保护他们的好奇之心。备课时要有针对性地面对大多数学生,启发他们学习的主动性和积极性,听取学生对教学的意见和要求,及时地改进教学工作,从而通过各种途径来培养学生获取新知识的能力,让学生为数学学习的主体。
当然,备课不能只着眼于课堂中的一切,还要重视学生创造性思维的培养,教师必须结合教材促进学生思维能力的健康发展,不要因循守旧,可以发散思维。“射箭要看靶子,弹琴要看听众”,教师讲课必须要因材施教,对于不同学生群体要有不同的教学方法和教学手段,只有这样才能最大限度地发掘每一位学生创造性思维和创新性能力。这正是《新课程标准》新倡导的重要的教学目标。
3.备教学方法
教学方法简单地说就是我们教师怎样教和学生如何学习的方法,教会学生如何运用掌握的知识解决实际生活中的问题的方法,过去只备教师教,而忽视学生如何学。例如有这样一题:一个圆柱的侧面展开图是一个边长为6.28厘米的正方形,求这个圆柱的表面积和体积?这题中只有一个数字6.28厘米,有些学生不知从何开始,如果单纯的用文字叙述,说明各种量之间的关系,学生很难听懂,也很难听得进去,教师也会感觉这种方法在课堂上的效果很不明显,不会的学生仍然不知什么回事,在备课时我思考了很久,最后我决定少说、多做、多演示,然后让学生自己动手做,于是课前我做了一个边长为6.28厘米的正方形,上课时把这个正方形卷起来,就成为了圆柱,然又还原成正方形,多次的做,然后让学生一起去做,在做这个实践的过程中让学生明白这个圆柱的高是什么,底面的周长是什么,启发学生的思维,激励学生的主动性、能动性,使学生在实践中学习,实践中成长,这节课后发现教学效果非常明显,学生学得轻松,我也教得轻松,当然没有一成不变的教法,即使是对同一教材,对于不同学生群体也允许有不同的教法,教学的方法是各种各样的,我对教学方法的选择有几点感悟:
3.1激发学生好奇心。
好奇心和创造有着密切的联系,活泼而好奇的儿童对周围的环境具有丰富的感受性,在与外界相互作用下自信心不断增强,并逐步建立起较强的自尊心和创造能力。因此,在教学中,教师应抓住学生的好奇心,积极创造学习情境,不断引导,适时鼓励让学生体验成功。
3.2鼓励学生参与。
学生是学习的主体,主体参与实践活动,是学生学习数学的一种有意识的活动,需要有激励推动他们去学习的内部动力,因此教师在教学实践活动时,不仅要激发学生心灵深处强烈的求知欲望,而且要让学生在自主实践活动中获得成功,从而产生强大的内部动力。
3.3教会学生观察。
苏霍姆林斯基说:“观察是思考和识记之母”,在实践活动中,要根据教学内容的特点,引导学生按一定的思想进行观察,发现事物间的联系。
3.4指导学生操作。
动手操作是激发学生兴趣的有效途径,它能够化虚幻为具体,变枯燥为生动,经过精心组织,可以让学生在动手实践中实实在在地掌握知识,培养能力,让学生不断产生创新的欲望和动机,使学生真正成为学习的主人。
4.做好教学反思工作
教学反思是教学设计的延伸,它可以将数学中的点点滴滴经过冷静思考后,发现有什么成功之举,不足之处,从而矫正日后的教学行为,反思中可以悟出教学方法千变万化,又能总结出改进教学的具体措施,这样就可以提高自己的教学专业的水平,还可以为自己教学理论水平的提高打下良好的基础,还可以为教学论文提供题材,一个不懂得反思的教师是不成熟的教师,是缺乏理智与创新发展的教师,特级教师华应龙的课为什么那么精彩?看了他的教学后记你就会明白,华老师的备课写满了反思,他的成功之处就在于反思,不断地反思,不断地改进教学,不断地超越自己。
总之,备课是上课前对课堂上的教学程序和内容的一连贯性安排构思,需要精心准备,做到心中有数,但我认为备课还不止这些,备课应该不拘泥于形式,它绝不是单单应付领导检查的一般般的教学程序的安排。它的形式可以是多种多样,它可以是在教科书上批注、补充,在资料上添加感受,也可以在备完之后附加更多的圈圈点点。这也适应了“解放思想,实事求是,与时俱进”的教学要求,要提高备课质量,必须打破备课形式上的枷锁,备课应心中有教材,心中有学生,心中有教法,心中有目标,要遵循规律,又要大胆创新,勤奋学习,教师思想和行为要走到学生中去,走到集体中去沟通思想,协商备课。我想,只有不拘形式的具有开拓精神的备课,才能适应新课程的教学,才能真正起到备课的作用。
1.备教学目标
首先,应当全面的系统的掌握教学内容,明确所要教学的内容在整个知识体系中的地位和作用,明确教学的任务和方面。其次,备课时要仔细研究《数学课程标准》,从学生的接受能力情况看,本节课的教学重点、难点又是什么,最后确定学生学习目标,只有把握好教学目标,课堂上才能更好地落实学习目标,才能立足于学生的全面发展,课堂上有的放矢。
2.备教学对象
“教师是知识的传授者,学生是知识的接受者”,这种观念至今还影响着少数的教师,旧的教学习惯仍然不同程度地影响着课堂教学,《新课程标准》要求教师必须以教师教为中心,转移到以学生学为中心,以传授知识为中心转到以培养学生创新能力为中心,使教师在课堂中的主导地位和学生在学习中的主体作用有机会充分地协调搭配来,真正做到教学相长,课堂中教师不是传授学生知识,而是传授学生获取知识的能力,“授之以鱼,不如授之以渔”。因此,在小学的数学教学中,应努力创设问题情境,活跃学生思维,唤醒学生的求知欲望,保护他们的好奇之心。备课时要有针对性地面对大多数学生,启发他们学习的主动性和积极性,听取学生对教学的意见和要求,及时地改进教学工作,从而通过各种途径来培养学生获取新知识的能力,让学生为数学学习的主体。
当然,备课不能只着眼于课堂中的一切,还要重视学生创造性思维的培养,教师必须结合教材促进学生思维能力的健康发展,不要因循守旧,可以发散思维。“射箭要看靶子,弹琴要看听众”,教师讲课必须要因材施教,对于不同学生群体要有不同的教学方法和教学手段,只有这样才能最大限度地发掘每一位学生创造性思维和创新性能力。这正是《新课程标准》新倡导的重要的教学目标。
3.备教学方法
教学方法简单地说就是我们教师怎样教和学生如何学习的方法,教会学生如何运用掌握的知识解决实际生活中的问题的方法,过去只备教师教,而忽视学生如何学。例如有这样一题:一个圆柱的侧面展开图是一个边长为6.28厘米的正方形,求这个圆柱的表面积和体积?这题中只有一个数字6.28厘米,有些学生不知从何开始,如果单纯的用文字叙述,说明各种量之间的关系,学生很难听懂,也很难听得进去,教师也会感觉这种方法在课堂上的效果很不明显,不会的学生仍然不知什么回事,在备课时我思考了很久,最后我决定少说、多做、多演示,然后让学生自己动手做,于是课前我做了一个边长为6.28厘米的正方形,上课时把这个正方形卷起来,就成为了圆柱,然又还原成正方形,多次的做,然后让学生一起去做,在做这个实践的过程中让学生明白这个圆柱的高是什么,底面的周长是什么,启发学生的思维,激励学生的主动性、能动性,使学生在实践中学习,实践中成长,这节课后发现教学效果非常明显,学生学得轻松,我也教得轻松,当然没有一成不变的教法,即使是对同一教材,对于不同学生群体也允许有不同的教法,教学的方法是各种各样的,我对教学方法的选择有几点感悟:
3.1激发学生好奇心。
好奇心和创造有着密切的联系,活泼而好奇的儿童对周围的环境具有丰富的感受性,在与外界相互作用下自信心不断增强,并逐步建立起较强的自尊心和创造能力。因此,在教学中,教师应抓住学生的好奇心,积极创造学习情境,不断引导,适时鼓励让学生体验成功。
3.2鼓励学生参与。
学生是学习的主体,主体参与实践活动,是学生学习数学的一种有意识的活动,需要有激励推动他们去学习的内部动力,因此教师在教学实践活动时,不仅要激发学生心灵深处强烈的求知欲望,而且要让学生在自主实践活动中获得成功,从而产生强大的内部动力。
3.3教会学生观察。
苏霍姆林斯基说:“观察是思考和识记之母”,在实践活动中,要根据教学内容的特点,引导学生按一定的思想进行观察,发现事物间的联系。
3.4指导学生操作。
动手操作是激发学生兴趣的有效途径,它能够化虚幻为具体,变枯燥为生动,经过精心组织,可以让学生在动手实践中实实在在地掌握知识,培养能力,让学生不断产生创新的欲望和动机,使学生真正成为学习的主人。
4.做好教学反思工作
教学反思是教学设计的延伸,它可以将数学中的点点滴滴经过冷静思考后,发现有什么成功之举,不足之处,从而矫正日后的教学行为,反思中可以悟出教学方法千变万化,又能总结出改进教学的具体措施,这样就可以提高自己的教学专业的水平,还可以为自己教学理论水平的提高打下良好的基础,还可以为教学论文提供题材,一个不懂得反思的教师是不成熟的教师,是缺乏理智与创新发展的教师,特级教师华应龙的课为什么那么精彩?看了他的教学后记你就会明白,华老师的备课写满了反思,他的成功之处就在于反思,不断地反思,不断地改进教学,不断地超越自己。
总之,备课是上课前对课堂上的教学程序和内容的一连贯性安排构思,需要精心准备,做到心中有数,但我认为备课还不止这些,备课应该不拘泥于形式,它绝不是单单应付领导检查的一般般的教学程序的安排。它的形式可以是多种多样,它可以是在教科书上批注、补充,在资料上添加感受,也可以在备完之后附加更多的圈圈点点。这也适应了“解放思想,实事求是,与时俱进”的教学要求,要提高备课质量,必须打破备课形式上的枷锁,备课应心中有教材,心中有学生,心中有教法,心中有目标,要遵循规律,又要大胆创新,勤奋学习,教师思想和行为要走到学生中去,走到集体中去沟通思想,协商备课。我想,只有不拘形式的具有开拓精神的备课,才能适应新课程的教学,才能真正起到备课的作用。
展开全部
众所周知,备课的目的是为了更好地教学,教学的目的是为了学生掌握相关知识,掌握知识的目的是为了进行有效的运用。
"运用"是一个能动的概念,它是由知识演变为能力,进而发展成为素质的过程中不可缺少的环节,同时也是不以一章一节内容为划分区域的全面综合的过程。
由此可见,要想备好数学课,必须注意以下几个方面:
一、了解知识体系
因材施教
系统了解知识体系
这里所说的"系统了解",并非让我们掰着手指数出某章、某节是何内容,而是要我们认真研究数学发展的历史,反复考察现有教材的知识体系(主要是指:各知识点在整个知识体系中的地位、作用以及彼此间的内在联系),国内外初、高等数学的最新研究成果,以及数学在其他边缘学科、社会各个领域的实际运用情况、未来发展态势等等。
认真探讨内在联系
我们知道:数学教材和其他各科相比,具有相对稳定性,几年如一日(使用同一版本)的现象可以说是司空见惯。这为我们更好地探讨教材与教材、章与章、节与节、知识点与知识点之间的内在联系,提供了极为有利的条件。没有联系就没有数学,缜密的数学体系,有着其他任何学科都无法比拟的内在联系:公式、法则的推导,定理、公理的引入,数与形的结合,立体感的建立等等无一不是普遍联系的经典之作。
仔细关注能力要求
"可持续发展"早已不是什么新鲜话题,要做到人才的可持续发展,能力的培养至关重要。数学能力通常有一般能力和专业能力之分,其中,一般能力有:观察、理解、记忆、运用等能力;专业能力包括:运算能力、逻辑思维能力、推理证明能力、空间想象能力等等。不同能力的培养往往须要用不同的方法。因此,我们在传授知识之前,一定要将能力要求加以明确,做到有所侧重、有的放矢。
全面实施因材施教方略
每个学生有每个学生的特点,想用一个教案来将所有的学生"九九归一",显然是不切实际的。教案必须面向全体学生,这就要求教案内容应具有相当的"梯度"。这种"梯度"要能让基础好的学生"吃不了,兜着走"--给他们留一些有思考性的问题,以作为课堂内容的延续;让基础相对差一点的学生"吃得香,不肯走"
--让他们在简单的题目里,找回自信心,拥有成就感。能否"因材施教"是检查教师驾驭课堂能力大小、教学水平高低的重要方面,也是能否备好数学课的前提条件。
二、内容与方法的有机统一
合理安排、优化重组(内容)
有道是:"书是死的,人是活的。"因为各地文化底蕴有厚有薄、教学质量有高有低,教材的大范围统一,则意味着其针对性的减弱,所以课本内容只能作为讲课的主要参考依据,而非唯一标准。从教育的最终目的来看,学生要学的是知识体系的某些方面,而不是何种版本的教材。因而,备课时根据学生的具体情况,将课本中的相关内容进行合理安排、优化重组是十分必要的。
以人为本、按需分配(对象)
孟子这样认为:"心之官则思,思则得之,不思则不得也。"(参见《孟子》)学习的过程,是对原有知识体系进行整合、更新与扩容的过程,更是一个能动的、无法他代的艰苦的心理历程。为了达到预期的教学效果,在备课时一定要遵循"以人为本、按需分配"的原则,找准"教"与"学"的切入点,激发、培养、并满足全体学生学习数学的兴趣。
愉快教育、适度紧张(心理)孔子曾经说过:"知之者不如好之者,好之者不如乐之者。"(参见《论语》)。由此可见,教师备课的过程实质是"导演"利用多种"道具"形成多样可观可感的信息源的过程。唯有课程安排巧妙、课堂设置合理,才能给学生以多种感官上的良性刺激,对他们进行适当的诱导,使其在愉快教育、适度紧张等心理状态的共同作用下,全面、快速地提高心智。
因势利导、循序渐进(方法)数学以其特有的"严密性"而著称,而这种严密意味着其逻辑体系的"不可拆分性"。这一"密不可分"的特点,决定了数学教学过程的整体性、联通性与有序性。任何"一劳永逸"、"一步登天"的想法都是不现实的,只有教师因势利导,学生才能循序渐进。这个"势"往往包括学生的"年龄特点(生理年龄、心理年龄、社会年龄)、知识结构(同一科目的不同阶段、不同科目的同一阶段、不同科目的不同阶段)、认知水平(智力因素、非智力因素)"等等;"导"的方法则有:点拨、启发、暗示、互动、表扬、纠正等等。
三、"形散神不散"是散文艺术的最高境界,也是教学艺术的最高境界
有限的篇幅与不漏的"天网"
俗话说:"天网恢恢,疏而不漏。"每一篇教案都应成为一张无边的"天网"。尽管从内容、形式上来看,教案不可能面面俱到,但从知识、能力、技巧、乃至品质等方面来看,她应是一张无所不在的天网。绝不能让任何一个有利于学生发展的机会,消失于教案的"盲点"之中。要想将这张"网"织好、用好,教师的"修为"十分重要,它要求教师应具有完备的知识体系、较强的组织能力、以及良好的预见、应急能力等等。
数学美与"作秀"
"枯燥"是数学公认的特点,有"数学烦、物理难、化学玩"之说。或许数学有时真的有点"烦",但"烦"的背后,往往隐藏着一个又一个"数学的精彩"。这种精彩之所以不是经常为绝大多数人所感知,主要是因为人们在数学的某个方面的某些素养不够所致。数学美是客观存在的,只是有时缺少发现美的眼睛罢了。如何才能将数学美淋漓尽致地展现给每一位学子?"作秀"!精美的包装与适度的展现可以让学生在欣赏数学美的同时,激发起他们学习数学的兴趣。因而,要能使学生"入局","布局"--备课很重要。
数学模型与实际运用
"数学模型"是格式化了的解题模式。模型的建立过程,实际上就是对已有知识进行加工,使其成为技能的过程。这是一个综合的、抽象的、能动的过程,仅仅靠学生往往是难以完成的。因此,在备课的时候,教师要精心地组织、整理好相关内容,将数学模型引出、建立、与实际运用等几个方面有机地结合在一起,从而为学生能尽快地拥有尽可能多的知识、技巧与能力,做好内容、方式、方法上的准备。
形散与神不散
由于教学内容的不同、知识结构的差异以及难易程度的区别等等,同是数学这门学科,在备课时,教案的表达方式、表现手法上也应有所变化:或突出性质、或强调图形、或标注符号、或分析思路,各具形态,不一而足。有时一段画龙点睛的文字、一个出神入化的图形、一组不同寻常的公式、一条始料未及的思路均有可能成为一篇优秀的教案。这种提法也许不能为大多数人所接受。事实上,教案的风采往往在她内在的"神韵",而不在其"形式"。如果我们把目光仅仅放在"形"上,则很容易犯"形而上"的错误,得"形而下"的苦果。我们完全有理由这样认为:"形散而神不散"是散文艺术的最高境界,也是教学艺术的最高境界!
"运用"是一个能动的概念,它是由知识演变为能力,进而发展成为素质的过程中不可缺少的环节,同时也是不以一章一节内容为划分区域的全面综合的过程。
由此可见,要想备好数学课,必须注意以下几个方面:
一、了解知识体系
因材施教
系统了解知识体系
这里所说的"系统了解",并非让我们掰着手指数出某章、某节是何内容,而是要我们认真研究数学发展的历史,反复考察现有教材的知识体系(主要是指:各知识点在整个知识体系中的地位、作用以及彼此间的内在联系),国内外初、高等数学的最新研究成果,以及数学在其他边缘学科、社会各个领域的实际运用情况、未来发展态势等等。
认真探讨内在联系
我们知道:数学教材和其他各科相比,具有相对稳定性,几年如一日(使用同一版本)的现象可以说是司空见惯。这为我们更好地探讨教材与教材、章与章、节与节、知识点与知识点之间的内在联系,提供了极为有利的条件。没有联系就没有数学,缜密的数学体系,有着其他任何学科都无法比拟的内在联系:公式、法则的推导,定理、公理的引入,数与形的结合,立体感的建立等等无一不是普遍联系的经典之作。
仔细关注能力要求
"可持续发展"早已不是什么新鲜话题,要做到人才的可持续发展,能力的培养至关重要。数学能力通常有一般能力和专业能力之分,其中,一般能力有:观察、理解、记忆、运用等能力;专业能力包括:运算能力、逻辑思维能力、推理证明能力、空间想象能力等等。不同能力的培养往往须要用不同的方法。因此,我们在传授知识之前,一定要将能力要求加以明确,做到有所侧重、有的放矢。
全面实施因材施教方略
每个学生有每个学生的特点,想用一个教案来将所有的学生"九九归一",显然是不切实际的。教案必须面向全体学生,这就要求教案内容应具有相当的"梯度"。这种"梯度"要能让基础好的学生"吃不了,兜着走"--给他们留一些有思考性的问题,以作为课堂内容的延续;让基础相对差一点的学生"吃得香,不肯走"
--让他们在简单的题目里,找回自信心,拥有成就感。能否"因材施教"是检查教师驾驭课堂能力大小、教学水平高低的重要方面,也是能否备好数学课的前提条件。
二、内容与方法的有机统一
合理安排、优化重组(内容)
有道是:"书是死的,人是活的。"因为各地文化底蕴有厚有薄、教学质量有高有低,教材的大范围统一,则意味着其针对性的减弱,所以课本内容只能作为讲课的主要参考依据,而非唯一标准。从教育的最终目的来看,学生要学的是知识体系的某些方面,而不是何种版本的教材。因而,备课时根据学生的具体情况,将课本中的相关内容进行合理安排、优化重组是十分必要的。
以人为本、按需分配(对象)
孟子这样认为:"心之官则思,思则得之,不思则不得也。"(参见《孟子》)学习的过程,是对原有知识体系进行整合、更新与扩容的过程,更是一个能动的、无法他代的艰苦的心理历程。为了达到预期的教学效果,在备课时一定要遵循"以人为本、按需分配"的原则,找准"教"与"学"的切入点,激发、培养、并满足全体学生学习数学的兴趣。
愉快教育、适度紧张(心理)孔子曾经说过:"知之者不如好之者,好之者不如乐之者。"(参见《论语》)。由此可见,教师备课的过程实质是"导演"利用多种"道具"形成多样可观可感的信息源的过程。唯有课程安排巧妙、课堂设置合理,才能给学生以多种感官上的良性刺激,对他们进行适当的诱导,使其在愉快教育、适度紧张等心理状态的共同作用下,全面、快速地提高心智。
因势利导、循序渐进(方法)数学以其特有的"严密性"而著称,而这种严密意味着其逻辑体系的"不可拆分性"。这一"密不可分"的特点,决定了数学教学过程的整体性、联通性与有序性。任何"一劳永逸"、"一步登天"的想法都是不现实的,只有教师因势利导,学生才能循序渐进。这个"势"往往包括学生的"年龄特点(生理年龄、心理年龄、社会年龄)、知识结构(同一科目的不同阶段、不同科目的同一阶段、不同科目的不同阶段)、认知水平(智力因素、非智力因素)"等等;"导"的方法则有:点拨、启发、暗示、互动、表扬、纠正等等。
三、"形散神不散"是散文艺术的最高境界,也是教学艺术的最高境界
有限的篇幅与不漏的"天网"
俗话说:"天网恢恢,疏而不漏。"每一篇教案都应成为一张无边的"天网"。尽管从内容、形式上来看,教案不可能面面俱到,但从知识、能力、技巧、乃至品质等方面来看,她应是一张无所不在的天网。绝不能让任何一个有利于学生发展的机会,消失于教案的"盲点"之中。要想将这张"网"织好、用好,教师的"修为"十分重要,它要求教师应具有完备的知识体系、较强的组织能力、以及良好的预见、应急能力等等。
数学美与"作秀"
"枯燥"是数学公认的特点,有"数学烦、物理难、化学玩"之说。或许数学有时真的有点"烦",但"烦"的背后,往往隐藏着一个又一个"数学的精彩"。这种精彩之所以不是经常为绝大多数人所感知,主要是因为人们在数学的某个方面的某些素养不够所致。数学美是客观存在的,只是有时缺少发现美的眼睛罢了。如何才能将数学美淋漓尽致地展现给每一位学子?"作秀"!精美的包装与适度的展现可以让学生在欣赏数学美的同时,激发起他们学习数学的兴趣。因而,要能使学生"入局","布局"--备课很重要。
数学模型与实际运用
"数学模型"是格式化了的解题模式。模型的建立过程,实际上就是对已有知识进行加工,使其成为技能的过程。这是一个综合的、抽象的、能动的过程,仅仅靠学生往往是难以完成的。因此,在备课的时候,教师要精心地组织、整理好相关内容,将数学模型引出、建立、与实际运用等几个方面有机地结合在一起,从而为学生能尽快地拥有尽可能多的知识、技巧与能力,做好内容、方式、方法上的准备。
形散与神不散
由于教学内容的不同、知识结构的差异以及难易程度的区别等等,同是数学这门学科,在备课时,教案的表达方式、表现手法上也应有所变化:或突出性质、或强调图形、或标注符号、或分析思路,各具形态,不一而足。有时一段画龙点睛的文字、一个出神入化的图形、一组不同寻常的公式、一条始料未及的思路均有可能成为一篇优秀的教案。这种提法也许不能为大多数人所接受。事实上,教案的风采往往在她内在的"神韵",而不在其"形式"。如果我们把目光仅仅放在"形"上,则很容易犯"形而上"的错误,得"形而下"的苦果。我们完全有理由这样认为:"形散而神不散"是散文艺术的最高境界,也是教学艺术的最高境界!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询