f(x)在X0点连续的定义是什么

f(x)在X0点连续的定义是什么大学... f(x)在X0点连续的定义是什么大学 展开
 我来答
休闲娱乐助手之星M
2021-09-27 · TA获得超过53.8万个赞
知道大有可为答主
回答量:2857
采纳率:100%
帮助的人:108万
展开全部

函数f(x)在点x=x0处有定义是指f(x)在x=x0处存在。

f(x)在点x=x0处连续,从连续的定义理解是f(x)点x=x0处左右极限都存在且等于f(x0) ,从图像上看函数曲线在该点是连在一起的。

连续简介:

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

常用的连续性的最根本定义是在拓扑学中的定义,在条目连续函数 (拓扑学)中会有详细论述。在序理论特别是域理论中,有从这个基础概念中得出的另一种抽象的连续性:斯科特连续性。

休闲娱乐助手之星M
2021-10-01 · TA获得超过53.8万个赞
知道大有可为答主
回答量:2857
采纳率:100%
帮助的人:108万
展开全部

函数f(x)在点x=x0处有定义是指f(x)在x=x0处存在。

f(x)在点x=x0处连续,从连续的定义理解是f(x)点x=x0处左右极限都存在且等于f(x0) ,从图像上看函数曲线在该点是连在一起的。

连续的概念简介:

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

常用的连续性的最根本定义是在拓扑学中的定义,在条目连续函数 (拓扑学)中会有详细论述。在序理论特别是域理论中,有从这个基础概念中得出的另一种抽象的连续性:斯科特连续性。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-12-21
展开全部
如果f(x)在x0点可导,那么f(x)在x0点就必然连续。 如果f(x)在x0点连续,那么f(x)在x0点不一定可导。 所以f(x)在x0点可导,是f(x)在x0点连续的充分但非必要条件。
追问
谢谢大佬
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式