已知复数z满足(1+根号3i)z=i 求z 2、若2/1-i=a+bi(i为虚数单位,a b属于
1个回答
展开全部
x^2-4x+5=0的两根:
z1=[4+根号(16-20)]/2=2+i
同理:z2=2-i.由于题目要求a>0,b>0.故对此不讨论.
对z1:
注意到:对于任何复数z:z*(z的共轭)=|z|^2.
故由:|w-z1|<2*根号5.
得:|w-z1|^2<20.
而:w-z1=(u-2)+(3-1)i=(u-2)+2i
故由:|w-z1|^2<20
(w-z1)*[(w-z1)的共轭]<20
即:[(u-2)+2i}*[(u-2)-2i]<20
即:(u-2)^2+4<20
得(u-2)^2<16
求得:|u-2|<4,-4<u-2<4
即:-2<u<6
z1=[4+根号(16-20)]/2=2+i
同理:z2=2-i.由于题目要求a>0,b>0.故对此不讨论.
对z1:
注意到:对于任何复数z:z*(z的共轭)=|z|^2.
故由:|w-z1|<2*根号5.
得:|w-z1|^2<20.
而:w-z1=(u-2)+(3-1)i=(u-2)+2i
故由:|w-z1|^2<20
(w-z1)*[(w-z1)的共轭]<20
即:[(u-2)+2i}*[(u-2)-2i]<20
即:(u-2)^2+4<20
得(u-2)^2<16
求得:|u-2|<4,-4<u-2<4
即:-2<u<6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询