设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h...

设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h(x),使得f(x)=g(x)+h(x).书上证明过程:假若g(x)、h(x)存在,使得f... 设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h(x),使得f(x)=g(x)+h(x). 书上证明过程:假若g(x)、h(x)存在,使得f(x)=g(x)+h(x),(1), 且g(-x)=g(x),h(-x)=-h(x) 于是有f(-x)=g(-x)+h(-x)=g(x)-h(x),(2) 利用(1)、(2)式,可以做出g(x)和h(x),这个启发我们做如下证明: g(x)=[f(x)+f(-x)]/2 h(x)=[f(x)-f(-x)]/2 则 g(x)+h(x)=f(x), g(-x)=[f(-x)+f(x)]/2=g(x), h(-x)=[f(-x)-f(x)]/2=h(x). 证毕. 没看懂这个题,也没看懂过程... 1这个题的条件和结论分别是什么? 2上面证明的过程是什么方法?有人说是反证,貌似也不是啊? 3本来就是让证明在(-l,l)上任意函数都能用一奇函数,一偶函数的和来表示,怎么证得这么不明不白? 谢谢~~ 展开
 我来答
冀志祭旎
2019-11-19 · TA获得超过3649个赞
知道大有可为答主
回答量:3073
采纳率:26%
帮助的人:237万
展开全部
要证的是存在(-l,l)上的偶函数及奇函数h(x),使得f(x)=g(x)+h(x)条件是函数f(x)的定义域为(-l,l)假若g(x)、h(x)存在,使得f(x)=g(x)+h(x),(1),且g(-x)=g(x),h(-x)=-h(x)于是有f(-x)=g(-x)+h(-x)=g(x)-h(x),(2)这几句是必然成立的,无需证明,也没用到任何条件,纯属构造只是一个铺垫,目的是引入g(x)和h(x)主要是证这两个函数中有一个是奇函数一个是偶函数,这才是证明的核心所在,只要找到了一个奇函数和一个偶函数来表示f(x),证明就完成了于是就有了下面的语句g(x)=[f(x)+f(-x)]/2h(x)=[f(x)-f(-x)]/2则
g(x)+h(x)=f(x),g(-x)=[f(-x)+f(x)]/2=g(x),h(-x)=[f(-x)-f(x)]/2=h(x).就是通过
f(x)把g(x)和h(x)表示出来然后通过这种对称的形式证明了f(x)
g(x)中一个是奇函数一个是偶函数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式