f(x)连续可导,f(1)=0.证明存在x属于0到1,2f(x)+xf'(x)=0 我来答 1个回答 #热议# 不吃早饭真的会得胆结石吗? 户如乐9318 2022-07-26 · TA获得超过6667个赞 知道小有建树答主 回答量:2559 采纳率:100% 帮助的人:140万 我也去答题访问个人页 关注 展开全部 设F(x)=x^n*f(x) (x的n次方乘以f(x)) ,则函数F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=0,由罗尔中值定理:存在x∈(0,1) 使F‘(x)=0,F‘(x)=nx^(n-1)*f(x)+x^n*f’(x0)=0,两边除以x^(n-1),所以:nf(x)+xf'(x)=0 ... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-04-17 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证明对任意给定的 2021-10-24 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1 1 2022-07-30 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,|f'(x)|= 2021-01-26 设f(x)在[0,1].上连续,在(0,1)内可导,且f(1)=f(0)=0,证明:在(0,1? 1 2023-05-26 设 f(x)在[0,1] 上连续、在(0,1)内可导、且f(1)=0、证明方程 2xf(x)+x 2022-06-08 设f(x)在(0,1)上连续,在(0,1)内可导,且f(0)=f(1),证明存在0 2022-08-24 f(x)在[0,1]上连续并且在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,证明存在ξ,使得f'(ξ)=1 2016-12-01 设f(x)在【0,1】上连续,在(0,1)内可导,且f(1)=0.证明:存在ξ∈(0,1),使f'(ξ)=-f(ξ)/ξ 7 为你推荐: