证明函数f(x,y)=xy^2/(x^2+y^4),当(x,y)→(0,0)时极限不存在
2个回答
2014-04-10 · 知道合伙人教育行家
关注
展开全部
考虑动点以抛物线
y²=kx
方式趋于(0,0)
函数可以变成
k/(k²+1)
极限随着k的变化而改变,不趋向一个固定的值,
所以,原式的极限不存在。
y²=kx
方式趋于(0,0)
函数可以变成
k/(k²+1)
极限随着k的变化而改变,不趋向一个固定的值,
所以,原式的极限不存在。
追答
二十年教学经验,专业值得信赖!
如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。
考虑动点以抛物线
y²=kx
方式趋于(0,0)
函数可以变成
k/(k²+1)
极限随着k的变化而改变,不趋向一个固定的值,
所以,原式的极限不存在。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |