如图,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE,四边形ACDE是平行四边形,连接CE交A
如图,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE....
如图,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰三角形;③∠CGD+∠DAE=180°;④CD?AE=EF?CG.一定正确的结论有( ) A.1个 B.2个 C.3个 D.4个
展开
展开全部
①∵∠BAC=∠DAE=90°, ∴∠BAC+∠DAC=∠DAE+∠DAC, 即:∠BAD=∠CAE, ∵△ABC和△ADE都是等腰直角三角形, ∴AB=AC,AE=AD, ∴△BAD≌△CAE(SAS), ∴CE=BD, ∴故①正确; ②∵四边形ACDE是平行四边形, ∴∠EAD=∠ADC=90°,AE=CD, ∵△ADE是等腰直角三角形, ∴AE=AD, ∴AD=CD, ∴△ADC是等腰直角三角形, ∴②正确; ④∵△BAD≌△CAE,△BAE≌△BAD, ∴△CAE≌△BAE, ∴∠BEA=∠AEC=∠BDA, ∵∠AEF+∠AFE=90°, ∴∠AFE+∠BEA=90°, ∵∠GFD=∠AFE, ∴∠GDF+GFD=90°, ∴∠CGD=90°, ∵∠FAE=90°,∠GCD=∠AEF, ∴△CGD ∽ △EAF, ∴
∴CD?AE=EF?CG. 故④正确, ③由④得∵∠CGD=90°,∠DAE=90°, ∴③∠CGD+∠DAE=180° 故③正确; 故正确的有4个. 故选D. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询