如图1,AB为⊙O的直径,点C是⊙O上一点,∠BAC=30°,点D是AC边上一点,BC=DC,以DC为一边作等边三角形DC

如图1,AB为⊙O的直径,点C是⊙O上一点,∠BAC=30°,点D是AC边上一点,BC=DC,以DC为一边作等边三角形DCE.(1)求证:BD=OE;(2)将△DCE绕点... 如图1,AB为⊙O的直径,点C是⊙O上一点,∠BAC=30°,点D是AC边上一点,BC=DC,以DC为一边作等边三角形DCE.(1)求证:BD=OE;(2)将△DCE绕点C顺时针旋转α(0°<α<60°)得到△D1CE1(如图2),判断BD1与OE1是否相等,并说明理由. 展开
 我来答
xx1014魅i11
2014-12-18 · 超过58用户采纳过TA的回答
知道答主
回答量:103
采纳率:0%
帮助的人:139万
展开全部
(1)证明:∵AB是直径,
∴∠ACB=90°,
∵OA=OB,∠A=30°,
∴OC=
1
2
AB,BC=
1
2
AB,
∴OC=BC,
∵∠A=30°,OA=OC,
∴∠A=∠OCA=30°,
∴∠OCB=90°-30°=60°,
∵△DCE是等边三角形,
∴CD=CE,∠DCE=60°=∠OCB,
∴∠OCB+∠OCD=∠DCE+∠OCD,
即∠BCD=∠OCE=90°,
在△BCD和△OCE中
BC=OC
∠BCD=∠OCE
CD=CE

∴△BCD≌△OCE,
∴BD=CE.

(2)解:BD1与OE1相等,
理由是:∵△D1CE是等边三角形,
∴CD1=CE1,∠D1CE1=60°=∠OCB,
∴∠OCB+∠OCD1=∠D1CE1+∠OCD1
即∠BCD1=∠OCE1
在△BCD1和△OCE1
BC=OC
∠BCD1=∠OCE1
CD1=CE1

∴△BCD1≌△OCE1
∴BD1=OE1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式