如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形. (1)当

如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍... 如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形. (1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由. 展开
 我来答
柏含莲0Fo57c
2014-10-17 · TA获得超过162个赞
知道答主
回答量:118
采纳率:0%
帮助的人:126万
展开全部
(1)CD=BE.理由如下:(1分)
∵△ABC和△ADE为等边三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=60°,
∵∠BAE=∠BAC-∠EAC=60°-∠EAC,
∠DAC=∠DAE-∠EAC=60°-∠EAC,
∴∠BAE=∠DAC,(3分)
∴△DAC≌△EAB(SAS),
∴CD=BE.(4分)

(2)△AMN是等边三角形.理由如下:(5分)
∵△ABE≌△ACD,
∴∠ABE=∠ACD
∵M、N分别是BE、CD的中点,
∴BM=
1
2
BE=
1
2
CD=CN,
∵AB=AC,∠ABE=∠ACD,
∴△ABM≌△ACN.
∴AM=AN,∠MAB=∠NAC.(6分)
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,
∴△AMN是等边三角形.(7分)
设AD=a,则AB=2a.
∵AD=AE=DE,AB=AC,
∴CE=DE.
∵△ADE为等边三角形,
∴∠DEC=120°,∠ADE=60°,
∴∠EDC=∠ECD=30°,
∴∠ADC=90°.(8分)
∴在Rt△ADC中,AD=a,∠ACD=30°,
∴CD=
3
a.
∵N为DC中点,
∴DN=
3
2
a

∴AN=
DN 2 + AD 2
=
(
3
2
a)
2
+ a 2
=
7
2
a
.(9分)
∵△ADE,△ABC,△AMN为等边三角形,
∴S △ADE :S △ABC :S △AMN =a 2 :(2a) 2 :(
7
2
a
2 =1:4:
7
4
=4:16:7(10分)

解法二:△AMN是等边三角形.理由如下:(5分)
∵△ABE≌△ACD,M、N分别是BE、CD的中点,
∴AM=AN,NC=MB.
∵AB=AC,
∴△ABM≌△ACN,
∴∠MAB=∠NAC,
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,
∴△AMN是等边三角形,(7分)
设AD=a,则AD=AE=DE=a,AB=BC=AC=2a,
易证BE⊥AC,
∴BE=
AB 2 - AE 2
=
(2a) 2 - a 2
=
3
a

∴EM=
3
2
a

∴AM=
EM 2 + AE 2
=
(
3
2
a)
2
+ a 2
=
7
2
a

∵△ADE,△ABC,△AMN为等边三角形,
∴S △ADE :S △ABC :S △AMN =a 2 :(2a) 2 :(
7
2
a
2 =1:4:
7
4
=4:16:7.(10分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式