一场聚会上,n个人各有一顶帽子,大家把帽子混在一起,每人随机抽取一顶,问每个人拿的都不是自己的帽子 50
即n阶错排数D[n]=n!(1/0!-1/1!+1/2!+...+(-1)^(n)/n!)。
推导方法:
1、递推推到:将给定的帽子x放到某个位置。
那么D[n] = 该位置的帽子放到x和不放到x的数量,由于给定的帽子共有n-1种交换法。
D[n]=(n-1)*(D[n-2]+D[n-1])。
2、直接推倒:利用容斥原理。
对A1 到 An 个人 没占到自己位置的方案数 等于全排列数 - (Ai)站在自己位置上的(剩下n - 1 个全排列) + (Ai,Aj)两个人占在自己的位置上(其他全排列) ……
即为 D[n] = n!- C(n,1)*(n-1)! + C(n,2)*(n-2)! - C(n,3)*(n-3)! + .......(-1)^n*C(n,n)*(0)。
3、总结。
上式结果化简为D[n]=n!(1/0!-1/1!+1/2!+...+(-1)^(n)/n!),所以概率为P[n] = D[n]/n!=(1/0!-1/1!+1/2!+...+(-1)^(n)/n!)。
e的x次方在x0=0的泰勒展开式
e的x次方在x0=0的泰勒展开式是1+x+x^2/2!+x^3/3!+...+x^n/n!+Rn(x) ,求解过程如下:
把e^x在x=0处展开得:
f(x)=e^x
= f(0)+ f′(0)x+ f″(0)x ²/ 2!+...+ fⁿ(0)x^n/n!+Rn(x)
=1+x+x^2/2!+x^3/3!+...+x^n/n!+Rn(x)
其中 f(0)= f′(0)=...= fⁿ(0)=e^0=1。
首先考虑n各帽子不在自己的位置:
即n阶错排数D[n]=n!(1/0!-1/1!+1/2!+...+(-1)^(n)/n!);
推导方法:
1递推推到:将给定的帽子x放到某个位置
那么D[n] = 该位置的帽子放到x和不放到x的数量,由于给定的帽子共有n-1种交换法
D[n]=(n-1)*(D[n-2]+D[n-1])
2直接推倒:利用容斥原理
对A1 到 An 个人 没占到自己位置的方案数 等于全排列数 - (Ai)站在自己位置上的(剩下n - 1 个全排列) + (Ai,Aj)两个人占在自己的位置上(其他全排列) ……
即为 D[n] = n!- C(n,1)*(n-1)! + C(n,2)*(n-2)! - C(n,3)*(n-3)! + .......(-1)^n*C(n,n)*(0)!
上式结果化简为D[n]=n!(1/0!-1/1!+1/2!+...+(-1)^(n)/n!);
所以概率为P[n] = D[n]/n!=(1/0!-1/1!+1/2!+...+(-1)^(n)/n!);
式子内部我们发现是e^(-1)的泰勒展开
所以n->∞ 时P[n]=e^(-1)
楼下都在瞎扯,望采纳
不对啊
不是这个
1-(n-1分之1)