证明方程1/(x-1)+1/(x-2)+1/(x-3)=0在(1,2)和(2,3)内各有一个实根

 我来答
昌又晴哀莉
2020-01-17 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:35%
帮助的人:912万
展开全部
证明:设f(x)=x^3-3x-1,则f'(x)=3x^2-3
∵x>1,
∴x^2>1,
∴3x^2-3>0
即f'(x)>0,
∴函数f(x)在(1,2)上单调递增
而f(1)=-1<0,
f(2)=1>0
∴f(x)至少与x轴有一个交点
海场奋渡莪盗烽醛甫互
即方程x^3-3x=1在(1,2)内至少有一个实根
望采纳!有问题请追问!
童修美饶蕊
2020-01-17 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:713万
展开全部
第一问:
3x²-12x+11=0,直接解出方程,看一下根的大小不就可以判断了。也要受x≠1,2,3的制约,否则方程无意义。
第二问:单调性只能用定义证明,证明如下:
设1<x1<x2<2
则f(x1)-f(x2)
=1/(x1-1)+1/(x1-2)+1/(x1-3)-[1/(x2-1)+1/(x2-2)+1/(x2-3)]
=[3x1²-12x1+11-(3x2²-12x2+11)]/(x1-1)(x2-1)(x1-2)(x2-2)(x1-3)(x2-3)
分母显然大于0,判断分子正负即可
分子=3(x1²-x2²)-12(x1-x2)=3(x1-x2)(x1+x2-4)
因为1<x1<x2<2
所以:x1-x2<0,x1+x2-4<0
即当1<x1<x2<2时,f(x1)-f(x2)>0,即f(x1)>f(x2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
亥怀绿严莱
2020-01-23 · TA获得超过3.3万个赞
知道大有可为答主
回答量:1.2万
采纳率:32%
帮助的人:798万
展开全部
第一问:
3x²-12x+11=0,直接解出方程,看一下根的大小不就可以判断了。也要受x≠1,2,3的制约,否则方程无意义。
第二问:单调性只能用定义证明,证明如下:
设1<x1<x2<2
则f(x1)-f(x2)
=1/(x1-1)+1/(x1-2)+1/(x1-3)-[1/(x2-1)+1/(x2-2)+1/(x2-3)]
=[3x1²-12x1+11-(3x2²-12x2+11)]/(x1-1)(x2-1)(x1-2)(x2-2)(x1-3)(x2-3)
分母显然大于0,判断分子正负即可
分子=3(x1²-x2²)-12(x1-x2)=3(x1-x2)(x1+x2-4)
因为1<x1<x2<2
所以:x1-x2<0,x1+x2-4<0
即当1<x1<x2<2时,f(x1)-f(x2)>0,即f(x1)>f(x2)
所以函数f(x)=1/(x-1)+1/(x-2)+1/(x-3)在(1,2)单调递减
同理可判断在(2,3)区间上是增函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式