高中数学外接球解题技巧
展开全部
高中数学外接球解题技巧如下:
1) 抓住“接”和“切”的关键特征
a) 外接球
外接球关键特征为外“接”。因此,各“接”点到球心距离相等且等于半径,解题时无论构造图形还是计算都要对此善加利用。
b) 内切球
内切球关键特征为内“切”。因此,各“切”点到球心距离相等且等于半径,且与球心的连线垂直切面,解题时无论构造图形还是计算都要对此善加利用。
2) 抓住“中心位置”的特性
在这类题中,组合体的中心常常因组合体的某些性质(如对称性)而位于一些特殊位置(如圆心、中心重合),因而很多时候确定中心位置对解题具有非常重要的作用。一般方法为:
a) 确定中心位置, 一般为解题的关键第一步
当为外接球、或只有一个内切球时,组合体的中心就是球心;当内切球不止一个,且两两相切时,可根据对称性、外接球的内接面的中心垂线等特性来确定中心位置。
b) 构建几何图形,一般为解题的关键第二步(然后只需计算基本量并代入公式求解了)
基于中心位置和球心(不与中心重合时),并结合外接点或内切点,构建可方便地用来辅助计算的几何图形——最终目标多为直角三角形。这是求解这类问题的要领与技巧。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询