高等数学微分方程,请问这道题该怎么解?
展开全部
看作不显含自变量的可降阶的二阶微分方程,以y为自变量,令y'=p,则y''=p*dp/dy,原方程化为y*p*dp/dy=1+p^2,分离变量,pdp/(1+p^2)=dy/y,两边积分,1/2*ln(1+p^2)=lny+1/2*lnC1,所以1+p^2=C1*y^2,即(y')^2=C1*y^2-1。
由初始条件知C1=1,所以y'=±√(y^2-1)。分离变量,±dy/√(y^2-1)=dx,两边积分±ln(y+√(y^2-1))=x+C2,由初始条件知C2=-1,所以ln(y+√(y^2-1))=±(x-1),解得y=(e^(x-1)+e^(1-x))/2。
由初始条件知C1=1,所以y'=±√(y^2-1)。分离变量,±dy/√(y^2-1)=dx,两边积分±ln(y+√(y^2-1))=x+C2,由初始条件知C2=-1,所以ln(y+√(y^2-1))=±(x-1),解得y=(e^(x-1)+e^(1-x))/2。
展开全部
当x=1的时候 y'=0 y=1 带进去试试看
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询