已知函数f(x)的定义域为D:(-∞,0)∪(0,+∞),且满足对于任意x,y∈D,有f(xy)=f(x)+f(y)

已知函数f(x)的定义域为D:(-∞,0)∪(0,+∞),且满足对于任意x,y∈D,有f(xy)=f(x)+f(y).(I)求f(1),f(-1)的值;(II)判断f(x... 已知函数f(x)的定义域为D:(-∞,0)∪(0,+∞),且满足对于任意x,y∈D,有f(xy)=f(x)+f(y).(I)求f(1),f(-1)的值;(II)判断f(x)的奇偶性并说明理由;(III)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围. 展开
 我来答
手机用户48448
2014-08-10 · TA获得超过321个赞
知道答主
回答量:126
采纳率:0%
帮助的人:141万
展开全部
(1)∵f(xy)=f(x)+f(y)对于任意x,y∈R都成立.
令x=y=1,则f(1)=f(1)+f(1),解得f(1)=0;
令x=y=-1,则f(1)=f(-1)+f(-1),解得f(-1)=0;
(2)函数f(x)是R上的奇函数.
证明:令x=y=0,则f(0)=f(0)+f(0),解得f(0)=0;
令y=-x,则f(0)=f(x)+f(-x)=0,
∴f(-x)=-f(x),
∴函数f(x)是R上的奇函数.
(3)∵f(xy)=f(x)+f(y),f(4)=1
则f(16)=f(4×4)=f(4)+f(4)=2f(4)=2,
∴f(64)=f(4×16)=f(4)+f(16)=3
所以f(3x+1)+f(2x-6)=f[(3x+1)(2x-6)]=f(6x 2 -16x-6)≤3=f(64)
已知函数f(x)是定义在(0,+∞)上的增函数
所以f(0)<f(6x 2 -16x-6)≤f(64)
即0<6x 2 -16x-6≤64,解得:3<x≤5.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式