如图△ABC为等边三角形,P为BC上一点,△APQ为等边三角形.(1)求证:AB∥CQ.(2)是否存在点P使得AQ⊥

如图△ABC为等边三角形,P为BC上一点,△APQ为等边三角形.(1)求证:AB∥CQ.(2)是否存在点P使得AQ⊥CQ?若存在,指出P的位置;若不存在,说明理由.... 如图△ABC为等边三角形,P为BC上一点,△APQ为等边三角形.(1)求证:AB∥CQ.(2)是否存在点P使得AQ⊥CQ?若存在,指出P的位置;若不存在,说明理由. 展开
 我来答
莫甘娜DDh2
2014-11-07 · TA获得超过168个赞
知道答主
回答量:129
采纳率:0%
帮助的人:62.4万
展开全部
(1)证明:∵△ABC和△APQ都是等边三角形,
∴AB=AC,AP=AQ,∠BAC=∠PAQ=60°,
∴∠BAC-∠PAC=∠PAQ-∠PAC,
∴∠BAP=∠CAQ,
在△ABP和△ACQ中
AB=AC
∠BAP=∠CAQ
AP=AQ

∴△ABP≌△ACQ(SAS),
∴∠ACQ=∠B=∠BAC=60°,
∴AB∥CQ;

(2)存在点P使得AQ⊥CQ,当P为BC中点时符合,理由是:
∵由(1)知,△ABP≌△ACQ,
∴∠ACB=∠AQP=∠ACQ=∠B=∠BAC=60°,BP=CQ,
∵P为BC中点,
∴PC=BP=CQ,
∴∠CQP=∠QPC=
1
2
(180°-∠PCQ)=
1
2
×(180°-60°-60°)=30°,
∵△APQ是等边三角形,
∴∠AQP=60°,
∴∠AQC=60°+30°=90°,
∴AQ⊥QC,
即存在点P使得AQ⊥CQ,当P为BC中点时符合.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式