设x∈[2,8],函数f(x)=1/2㏒a(ax)* ㏒a(a^2)的最大值是1,最小值是-1/8,求a的值 5
展开全部
f(x)=1/2㏒[a](ax)* ㏒[a](a^2 x)
=1/2(㏒[a]a+㏒[a]x)*(㏒[a]a^2+㏒[a]x)
=1/2(1+㏒[a]x)(2+㏒[a]x)
=1/2[(3/2+㏒[a]x)^2-1/4],
若a>1, 因为x∈[2,8], 所以㏒[a]x>0,
与f(x)的最值矛盾,故0<a<1.
从而㏒[a]x在x∈[2,8]单调减,
又在对称轴㏒[a]x=-3/2处f(x)能取到最小值-1/8,
则2<=a^(-3/2)<=8. ---(1)
最大值在端点处取得,
若f(2)=1,解得a=2^(-1/3), 满足(1).
若f(8)=1,解得a=1/2, 满足(1).
故 a=2^(-1/3), 或1/2。
=1/2(㏒[a]a+㏒[a]x)*(㏒[a]a^2+㏒[a]x)
=1/2(1+㏒[a]x)(2+㏒[a]x)
=1/2[(3/2+㏒[a]x)^2-1/4],
若a>1, 因为x∈[2,8], 所以㏒[a]x>0,
与f(x)的最值矛盾,故0<a<1.
从而㏒[a]x在x∈[2,8]单调减,
又在对称轴㏒[a]x=-3/2处f(x)能取到最小值-1/8,
则2<=a^(-3/2)<=8. ---(1)
最大值在端点处取得,
若f(2)=1,解得a=2^(-1/3), 满足(1).
若f(8)=1,解得a=1/2, 满足(1).
故 a=2^(-1/3), 或1/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询