设数列{an}的前n项和为Sn已知a1=a,a(n+1)=Sn+【3的n次方】n∈正整数设bn=Sn-[3的n次方]求{bn}的通项公式

请写明过程,最好写出解题思路... 请写明过程,最好写出解题思路 展开
hw0509hp
2010-07-29 · TA获得超过1322个赞
知道小有建树答主
回答量:230
采纳率:0%
帮助的人:376万
展开全部
解:
由题意得a(n+1)=Sn+1-Sn=Sn+3^n
即Sn+1=2Sn+3^n
整理得
Sn+1-3^(n+1)=2(Sn-3^n)
设Sn-3^n=bn
则{bn}是以b1为首项,2为公比的等比数列
b1=S1-3^1=a-3
bn=(a-3)*2^(n-1)
经检验,n=1时,bn=(a-3)*2^(n-1)也成立

故{bn}的通项公式为
bn=(a-3)*2^(n-1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式