求解一道极限
x->0
ln(1+x) = x -(1/2)x^2+(1/3)x^3 +o(x^3)
ln(1+x)/x = 1 -(1/2)x+(1/3)x^2 +o(x^2)
ln[ln(1+x)/x]
=ln[ 1 -(1/2)x+(1/3)x^2 +o(x^2) ]
=[-(1/2)x+(1/3)x^2] -(1/2)[-(1/2)x+(1/3)x^2]^2 +o(x^2)
=[-(1/2)x+(1/3)x^2] -(1/2)[(1/4)x^2+o(x^2)] +o(x^2)
=-(1/2)x +(5/24)x^2 +o(x^2)
[ ln(1+x)/x]^(1/x)
=e^{ ln[ ln(1+x)/x] /x }
=e^{ [-(1/2)x +(5/24)x^2 +o(x^2) ] /x }
=e^ [-1/2 +(5/24)x +o(x) ]
=(1/√e) e^{(5/24)x +o(x) }
=(1/√e) .[ 1+ (5/24)x +o(x) ]
[ ln(1+x)/x]^(1/x) - 1/√e = [5/(24√e)] x +o(x)
lim(x->0) { [ ln(1+x)/x]^(1/x) - 1/√e }/x
=lim(x->0) [5/(24√e)] x/x
=5/(24√e)