在△ABC中,a.b.c分别是角A.B.C的对边,设a+c=2b,A-c=π/3求sinB的值?
展开全部
因为
a
+
c
=
2b
由正弦定理,知:
sinA
+sinC
=
2sinB
2sin[(A+C)/2]
*
cos[(A-C)/2]
=
2sinB
sin[(A+C)/2]
*
cos(pi/6)
=
sinB
因为A
+
B
+
C
=
180
所以:(A+C)/2
=
pi/2
-
B/2
所以:cos(B/2)
*
√3/2
=
2sin(B/2)cos(B/2)
显然B/2不等于pi/2,cos(B/2)不等于0
所以:
sin(B/2)
=
√3/4
cos(B/2)
=
√13/4
sinB
=
2sin(B/2)cos(B/2)
=
√39/8
a
+
c
=
2b
由正弦定理,知:
sinA
+sinC
=
2sinB
2sin[(A+C)/2]
*
cos[(A-C)/2]
=
2sinB
sin[(A+C)/2]
*
cos(pi/6)
=
sinB
因为A
+
B
+
C
=
180
所以:(A+C)/2
=
pi/2
-
B/2
所以:cos(B/2)
*
√3/2
=
2sin(B/2)cos(B/2)
显然B/2不等于pi/2,cos(B/2)不等于0
所以:
sin(B/2)
=
√3/4
cos(B/2)
=
√13/4
sinB
=
2sin(B/2)cos(B/2)
=
√39/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询