1个回答
展开全部
解:∵A=π/3
∴B+C=2π/3
由正弦定理,可知
a/(b-c)=sinA/(sinB-sinC)
则原式=sinA*sin(π/3-C)/(sinB-sinC)
=sinA*sin(π/3-C)/{2[cos(B+C)/2]*[sin(B-C)/2]}
=sin(π/3)*sin(π/3-C)/{2cos(π/3)*sin[(B-C)/2]}
=(√3/2)*sin(π/3-C)/sin[(B-C)/2]
又B+C=2π/3
∴B-C=2π/3-2C
∴(B-C)/2=π/3-C
∴sin[(B-C)/2]=sin(π/3-C)
∴原式=√3/2
∴B+C=2π/3
由正弦定理,可知
a/(b-c)=sinA/(sinB-sinC)
则原式=sinA*sin(π/3-C)/(sinB-sinC)
=sinA*sin(π/3-C)/{2[cos(B+C)/2]*[sin(B-C)/2]}
=sin(π/3)*sin(π/3-C)/{2cos(π/3)*sin[(B-C)/2]}
=(√3/2)*sin(π/3-C)/sin[(B-C)/2]
又B+C=2π/3
∴B-C=2π/3-2C
∴(B-C)/2=π/3-C
∴sin[(B-C)/2]=sin(π/3-C)
∴原式=√3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询