点到直线的距离公式是怎么推导出来的?
展开全部
向量点到直线的距离公式是:
设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:
同理可知,当P(x0,y0),直线L的解析式为y=kx+b时,则点P到直线L的距离为:
考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)。
证明方法
把平面的直线方程Ax+By+C=0,看成是一个xyz空间的方程,它是一个无z方程,也就是个直线柱面(即平面)的方程。
然后求点(x0,y0,0)到这个平面的距离(因为它就=(xy面中点(x0,y0)到Ax+By+C=0的距离,因为这相当于点到空中那个平面在xy的投影线的距离)。
而根据空间中点(x0,y0,z0)到平面Ax+By+Cz+D=0的距离公式:
d=|Ax0+By0+Cz0+D|/[√(A^2+B^2+C^2)]。
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询