1/x+1/y=4,x+y=2,求x²y与xy²的值
1个回答
展开全部
,x+y = 2, 1/x+1/y = (x+y)/(xy) = 4, xy = 1/2
x, y 是 u^2 - 2u + 1/2 = 0 的两根 u = 1 ± √2/2
x = 1 + √2/2 时, x²y = x(xy) = 1/2 + √2/4 ;
x = 1 - √2/2 时, x²y = x(xy) = 1/2 - √2/4.
x²y 与 xy² 的值 均可为 1/2 ± √2/4
x, y 是 u^2 - 2u + 1/2 = 0 的两根 u = 1 ± √2/2
x = 1 + √2/2 时, x²y = x(xy) = 1/2 + √2/4 ;
x = 1 - √2/2 时, x²y = x(xy) = 1/2 - √2/4.
x²y 与 xy² 的值 均可为 1/2 ± √2/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询