求两个数学题证明
1.证明:[2x]+[2y]≥[x]+[y]+[x+y]2.证明:[x/n]=[[x]/n]取整函数...
1.证明:[2x]+[2y]≥[x]+[y]+[x+y]
2.证明:[x/n]=[[x]/n]
取整函数 展开
2.证明:[x/n]=[[x]/n]
取整函数 展开
3个回答
展开全部
1
左=[2x-[x]+[y]]+[2y-2[y]]+[x]+[y]
=[[x]+[y]+2(x-[x])]+[2(y-[y])]+[x]+[y]
[x+y]=[x]+[y]+1时,则满足2(x-[x])≥1或2(y-[y])≥1
[[x]+[y]+2(x-[x])]+[2(y-[y])]=[x]+[y]+1或[x]+[y]+2
[[x]+[y]+2(x-[x])]+[2(y-[y])]≥[x]+[y]+1
[x+y]=[x]+[y]时,[2(x-[x]]=1or0,[2(y-[y])]=1or0
[[x]+[y]+2(x-[x])]+[2(y-[y])]≥[x]+[y]+1
综上,[2x]+[2y]≥[x]+[y]+[x+y]
2
[x/n]=[[x]/n+(x-[x])/n]
(x-[x])/n<1
[x/n]=[[x]/n]
左=[2x-[x]+[y]]+[2y-2[y]]+[x]+[y]
=[[x]+[y]+2(x-[x])]+[2(y-[y])]+[x]+[y]
[x+y]=[x]+[y]+1时,则满足2(x-[x])≥1或2(y-[y])≥1
[[x]+[y]+2(x-[x])]+[2(y-[y])]=[x]+[y]+1或[x]+[y]+2
[[x]+[y]+2(x-[x])]+[2(y-[y])]≥[x]+[y]+1
[x+y]=[x]+[y]时,[2(x-[x]]=1or0,[2(y-[y])]=1or0
[[x]+[y]+2(x-[x])]+[2(y-[y])]≥[x]+[y]+1
综上,[2x]+[2y]≥[x]+[y]+[x+y]
2
[x/n]=[[x]/n+(x-[x])/n]
(x-[x])/n<1
[x/n]=[[x]/n]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询