已知函数f(x)=ax^2+bx+c(a>0,b∈R,c属于R)(I)若函数f(x)的最小值是f(
-1)=0,且c=1,F(x)={f(x)x>0,-f(x)x<0,求F(2)+F(-2)的值(II)若a=1,c=0,且If(x)I≤1在区间(0,1】恒成立,试求b取...
-1)=0,且c=1,F(x)={f(x)x>0,-f(x)x<0,求F(2)+F(-2)的值(II)若a=1,c=0,且If(x)I≤1在区间(0,1】恒成立,试求b取值范围
展开
展开全部
参考
(1)因为c=1,所以f(x)=ax^2+bx+1
因为f(x)的最小值是f(-1)=0,a>0,所以顶点是(-1,0),代入可解得:
a=1
b=2
f(x)=x^2+2x+1
f(2) = 9
f(-2) = 1
F(2)= f(2) = 9
F(-2)= -f(-2) =-1
F(2)+F(-2)= 8
(2)a=1,c=0,
f(x)=x^2+bx
If(x)I≤1
-1≤ f(x)≤1
f(x)=x^2+bx的图像开口向上,那么,要使在区间(0,1】内-1≤ f(x)≤1恒成立,必须同时满足下面4个条件:
对称轴在(0,1)...........................0< -b/2 <1..................-2<b<0
顶点纵座标在y=-1之上............. -b^2/4>= -1...............-2<= b <= 2
f(0)<1.................................................肯定成立
f(1) <= 1......................................1+ b<=1...............b<= 0
综合得: -2<b<0
好评,,谢谢
(1)因为c=1,所以f(x)=ax^2+bx+1
因为f(x)的最小值是f(-1)=0,a>0,所以顶点是(-1,0),代入可解得:
a=1
b=2
f(x)=x^2+2x+1
f(2) = 9
f(-2) = 1
F(2)= f(2) = 9
F(-2)= -f(-2) =-1
F(2)+F(-2)= 8
(2)a=1,c=0,
f(x)=x^2+bx
If(x)I≤1
-1≤ f(x)≤1
f(x)=x^2+bx的图像开口向上,那么,要使在区间(0,1】内-1≤ f(x)≤1恒成立,必须同时满足下面4个条件:
对称轴在(0,1)...........................0< -b/2 <1..................-2<b<0
顶点纵座标在y=-1之上............. -b^2/4>= -1...............-2<= b <= 2
f(0)<1.................................................肯定成立
f(1) <= 1......................................1+ b<=1...............b<= 0
综合得: -2<b<0
好评,,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询