不等式a2+8b2≥λb(a+b)对于任意的a,b∈R恒成立,则实数λ的取值范围为______

不等式a2+8b2≥λb(a+b)对于任意的a,b∈R恒成立,则实数λ的取值范围为______.... 不等式a2+8b2≥λb(a+b)对于任意的a,b∈R恒成立,则实数λ的取值范围为______. 展开
 我来答
萌娘2013
推荐于2016-12-01 · 超过62用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:111万
展开全部
∵a2+8b2≥λb(a+b)对于任意的a,b∈R恒成
∴a2+8b2-λb(a+b)≥0对于任意的a,b∈R恒成
即a2-(λb)a+(8-λ)b2≥0恒成立,
由二次不等式的性质可得,△=λ2+4(λ-8)=λ2+4λ-32≤0
∴(λ+8)(λ-4)≤0
解不等式可得,-8≤λ≤4
故答案为:[-8,4]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式