设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:对一切
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:对一切正整数n,有1a1a2+1a2a3+…+1ana...
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:对一切正整数n,有1a1a2+1a2a3+…+1anan+1<12.
展开
1个回答
展开全部
(Ⅰ)设等差数列{an}的公差为d,
则
,解得
故数列{an}的通项公式为:an=2n-1,n∈N*.…(6分)
(Ⅱ)∵
=
=
(
-
),
∴
+
+…+
=
[(1-
)+(
-
)+…+(
-
则
|
|
故数列{an}的通项公式为:an=2n-1,n∈N*.…(6分)
(Ⅱ)∵
1 |
anan+1 |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
∴
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |