设等差数列{an}的前n项和为Sn.且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)若an=2n-1,数列{
设等差数列{an}的前n项和为Sn.且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1...
设等差数列{an}的前n项和为Sn.且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{1bn}的前n项和Tn.
展开
田岛彩夏
推荐于2016-12-01
·
TA获得超过119个赞
关注
(1)∵等差数列{a
n}的前n项和为S
n.且S
4=4S
2,a
2n=2a
n+1,
∴
| 4a1+d=4(2a1+d) | a1+(2n?1)d=2a1+2(n?1)d+1 |
| |
,
解得a
1=1,d=2,
∴a
n=2n-1.(5分)
(2)∵a
n=2n-1,数列{b
n}满足:b
1=3,b
n-b
n-1=a
n+1(n≥2),
∴当n≥2时,b
n=(b
n-b
n-1)+(b
n-1-b
n-2)+…+(b
3-b
2)+(b
2-b
1)+b
1=a
n+1+a
n+…+a
4+a
3+b
1=n
2+2n,
当n=1时,也成立,
∴b
n=n
2+2n,
∴
=
=
(?),
∴T
n=
[(1-
)+(
?)+…+(
?)+(
?)]
=
(1+
-
-
)
=
-
.
收起
为你推荐: