一条等差数列问题
已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且An/Bn=(7n+45)/(n+3),那么a5/b5=要有详细的解题过程,最好加以说明,好的话我会加分。...
已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,
且An/Bn = (7n+45)/(n+3),那么a5/b5=
要有详细的解题过程,最好加以说明,好的话我会加分。 展开
且An/Bn = (7n+45)/(n+3),那么a5/b5=
要有详细的解题过程,最好加以说明,好的话我会加分。 展开
3个回答
展开全部
An=(a1+an)n/2,所以A2n-1=(a1+a2n-1)(2n-1)/2=an(2n-1),
所以A2n-1/B2n-1=an(2n-1)/bn(2n-1)=an/bn
所以,a5/b5=A9/B9
所以A2n-1/B2n-1=an(2n-1)/bn(2n-1)=an/bn
所以,a5/b5=A9/B9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
{an},{bn}均为等差数列,所以有 A9=9a5,B9=9b5. 因此a5/b5=(9a5)/(9b5)=A9/B9 (又令n=9 An/Bn=(7n+45)/(n+3))=(7*9+45)/(9+3)=108/12=9即 a5/b5=9.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询