解矩阵方程?

 我来答
帐号已注销
2021-02-08 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:160万
展开全部

可以用初等变换法:

有固定方法,设方程的系数矩阵为A,未知数矩阵为X,常数矩阵为B,即AX=B,要求X,则等式两端同时左乘A^(-1),有X=A^(-1)B。又因滚中纯为(A,E)~(E,A^(-1)),所以可用初等行变换求A^(-1),从而所有未知数都求出来了。

或:

已知矩阵A和B,AX=2X+B,即AX=2EX+B,(A-2E)X=B,X=(A-2E)^(-1)B,把矩阵A和矩阵B代入,运用矩阵的运算和逆阵的求法即可求出矩阵X。

扩展资料:

对于矩阵方程,大咐当系数矩阵是方阵时,先判断是否可逆。如果可逆,则可以利用左乘或右乘逆矩阵的方法求未知矩阵,如果方阵不可逆或是系数矩阵不是方阵,则需要用矩阵的广义逆来确培肢定矩阵方程有解的条件,进而在有解的情形求出通解。

举个例子:

1 3 2 …… 3 4 -1

2 6 5 * X = 8 8 3

-1 -3 1 ……-4 1 6

上列就是个矩阵方程。

参考资料来源:百度百科-矩阵方程

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
不能够199611

2020-04-15 · 我命由我不由天,不笑门前白丁
不能够199611
采纳数:4598 获赞数:12797

向TA提问 私信TA
展开全部

rt

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式