这是一道高中立体几何证明题,请看图片上的问题?

 我来答
霓屠Cn
2019-03-12 · 知道合伙人教育行家
霓屠Cn
知道合伙人教育行家
采纳数:1211 获赞数:5590

向TA提问 私信TA
展开全部

答:先回答你提的问题,你把直棱柱的关系用反了,应该是侧棱⊥(上、下)底面,而不一定是底边⊥侧棱;只有底面为直角三角形时,才可以运用你的方法;而题面的已知条件没有明确说明底面是直角三角形之前,是不可以人为定义为直角三角形的,所以,你的方法不可以用。这样证明违反逻辑关系。

证明:见下图,图中黑色线为实线,红色线为原图中的虚线,蓝色线为辅助线。

(1)因为AC=4, AB=5,cos∠CAB=4/5=AC/AB, 所以AB边所对的∠ACB是直角,所以AC⊥BC;因为三棱柱ABC-A1B1C1是直三棱柱,所以C1C⊥平面ABC,C1C⊥AC (AC∈面ABC),所以AC⊥平面BB1C1C(AC⊥平面BB1C1C内的两条相交直线),所以,AC⊥BC1。

(2)设B1C和BC1相交于E,连结DE,因为BB1C1C是矩形,所以E是BC1的中点,而D是AB的中点,所以DE是△BC1A中AC1边的中位线,所以AC1//DE,DE∈平面CDB1,所以AC1//平面CDB1。

(3)请看6面体图形。把四面体A1-CDB1扩大一倍到A1-CPB1,根据勾股定理定理BC=3,因为AA1=3,所以A1APP1是正方形,则对角线A1P=B1C=3√3,A1B1=B1P=A1C=CP=5;作CF⊥A1P于F,连结B1F,因为F是A1P边的中点,所以B1F⊥A1P,∠CFB1为平面B1CP和平面CA1P的二面角。CF=B1F=√[5^2-(3√2)^2=√25-9/2=√(59/2); 根据余弦定理:

cos∠CFB1=[2*59/2-(3√2)^]/(2*59/2)=41/59, sin∠CFB1=√1-(41/59)^2=√(18/59);

VA1-CDB1=(1/3)A1F*B1F*CF*sin∠CFB1=(1/3)(3√2)(59/2)*√(18/59)=3√59。


加气块之家
2019-02-15 · 为加气块生产提供一站式帮助
加气块之家
采纳数:160 获赞数:421

向TA提问 私信TA
展开全部
不能用你说的方法来证明AC丄BC1。道理是: ①AC丄平面BCC1B1本身这个结论需要证明,不可直接用,证明过程要利用题中给的数据先证明三角形ABC是直角三角形,得出AC丄BC,再利用直三棱柱的条件得出AC丄C1C,即可得出结论;②题中直三棱柱的条件只能得出侧面垂直于底面,还可得出C1C丄平面ABC,B1B丄平面ABC,但不能据此得出AC垂直于平面BCC1B1,也不能据此得出AC垂直于平面BCC1B1。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
健桥不是剑桥
2019-02-27
知道答主
回答量:74
采纳率:13%
帮助的人:6.7万
展开全部
你这跳步骤了,最后还是要用你那个证明,但是前提你得先证明①AC⊥平面BB'C'C,①是未知条件。(要注意直三棱柱是侧边垂直底面)
具体的证明方法:∵BB'⊥面ABC且AC包含于面ABC,∴BB’⊥AC,
又∵cos∠CAB=4/5=AB:AC ,∴∠ACB=90°,所以AC⊥BC,
又∵BB',BC都在面BB'C'C上,且BB',BC相交于B点,∴AC⊥平面BB'C'C。
后面就是你写的那样子啦。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lg_wm
2019-02-19 · TA获得超过1692个赞
知道小有建树答主
回答量:771
采纳率:0%
帮助的人:408万
展开全部
直三棱柱,是说测面垂直底面,不是说底面是直三角形
所以你由直三棱柱ABC-A1B1C1推出AC垂直面BCC1B1是不行滴。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
自然而然54
2019-02-13 · TA获得超过1.5万个赞
知道大有可为答主
回答量:1.7万
采纳率:82%
帮助的人:963万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式