如何证明两实数之间必有一个无理数

如何证明两实数之间必有一个无理数... 如何证明两实数之间必有一个无理数 展开
 我来答
皮学敖碧白
2019-03-08 · TA获得超过3659个赞
知道小有建树答主
回答量:3154
采纳率:26%
帮助的人:385万
展开全部
设这两个数是a和b,不妨假定b>a,并记L=b-a.
若a,b都是有理数,显然a+L/sqrt(2)就是a和b之间的一个无理数.
若a,b其中只有一个是无理数,那么(a+b)/2就是a和b之间的一个无理数.
若a和b都是无理数,一定存在正整数n,使得
L>1/10^n,那么a+1/10^n就是a和b之间的一个无理数.
其实学过实变函数就知道,有理数是零测度的,无理数是连续势的,因此从基数的角度看,任意两点之间,无理数比有理数多得多.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式