运筹学目标规划的单纯形法计算,最后检验数还是负数为什么就得到最优解了? 10
1个回答
展开全部
单纯形法的基本想法是从线性规划可行集的某一个顶点出发,沿着使目标函数值下降的方向寻求下一个顶点,面顶点个数是有限的,所以,只要这个线性规划有最优解,那么通过有限步选代后,必可求出最优解 。
为了用选代法求出线性规划的最优解,需要解决以下三个问题 :
(1)最优解判别准则,即迭代终止的判别标准 ;
(2)换基运算,即从一个基可行解迭代出另一个基可行解的方法 ;
(3)进基列的选择,即选择合适的列以进行换基运算,可以使目标函数值有较大下降
为了用选代法求出线性规划的最优解,需要解决以下三个问题 :
(1)最优解判别准则,即迭代终止的判别标准 ;
(2)换基运算,即从一个基可行解迭代出另一个基可行解的方法 ;
(3)进基列的选择,即选择合适的列以进行换基运算,可以使目标函数值有较大下降
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询