如何证明a3+b3+c3>=3abc

 我来答
天士凯数码17
2022-07-02 · TA获得超过2732个赞
知道小有建树答主
回答量:3605
采纳率:100%
帮助的人:192万
展开全部
证明:a^3+b^3+c^3
=(a+b)(a^2-ab+b^2)+c^3
=(a+b)^3-3ab(a+b)+c^3
=(a+b+c)^3-3c(a+b)(a+b+c)-3ab(a+b)
=(a+b+c)^3-3c(a+b)(a+b+c)-3ab(a+b+c)+3abc
=(a+b+c)[(a+b+c)^2-3c(a+b)-3ab]+3abc
=(a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab)+3abc
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)+3abc
=0.5(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)+3abc
=0.5(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]+3abc≥3abc
显然当且仅当a=b=c时等号成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式